Influence of aromatic substances on locomotor activity of Deroceras agreste slugs

  • M. Remezok Jan Evangelista Purkyne University in Usti nad Labem
  • T. M. Kolombar Oles Honchar Dnipro National University
  • O. V. Parhomenko National Pedagogical Dragomanov University
  • V. V. Brygadyrenko Oles Honchar Dnipro National University
Keywords: repellents; attractants; protection from slugs; agricultural pests; terrestrial slugs; chemical pollution.


The global climate changes are causing an increase in the number and harmfulness of slugs. Deroceras agreste (Linnaeus, 1758) (Stylommatophora, Agriolimacidae) is a polyphagous phytophage that damages over 150 species of plants, including many vegetables, cultivated berries and grasses. Other than decrease in yield, slugs cause deterioration of consumer qualities of the products, promote infections of plants, and are intermediate hosts of some parasites of mammals and birds. Thus, slugs impose great losses on agricultural farming, and therefore the objective of our study was determining the variability of locomotor activity of D. agreste slugs in reaction to aromatic substances. We determined repellent or attractive effects of those substances for the purpose of further using the obtained data for plant protection. We tested 52 substances and their mixtures, which were conditionally divided into the following groups: chemical solvents, plant extracts, aromatizers, organic acids and synthetic cosmetic additives. Only dimethyl sulfoxide could be identified as an attractant. All the rest of the substances increased the speed of the slugs to various degrees, but had no significant effect on the direction of the animals’ movement. Gasoline increased the speed of the slugs’ movement by 3.20 times, xylene by 4.56. The most effective organic acids and aromatizers to increase the moving speed of slugs were avobenzone and formic acid: the first caused a 2.83-fold increase in the moving speed, the other a 3.16-fold increase. Only one of 13 aromatic substances changed the direction of the slugs’ movement during the experiment – β-ionone. As with the plant extracts, the highest effect on locomotor activity of slugs was exerted by tree bark of Quillaja saponaria (3.64-fold) and Aesculus hippocastanum extract (4.33-fold). Furthermore, together with Capsicum frutescens, they changed the direction the mollusks were moving in, and therefore could be used as repellents. Synthetic cosmetic additives hydrolyzed silk and chrysalide oil exerted the greatest effects on the lcomotor activity of slugs (3.16 and 3.20 times, respectively). A total of 78.6% of the slugs moved away from chrysalide oil, and thus this oil may be suggested as a repellent, as well as mousse de babassu and cocamidopropyl betaine (84.6% and 78.6%, respectively). Therefore, a large amount of the tested substances to one or another extent made the slugs move faster, but most of them did not alter the direction in which the slugs were moving.


Abramovic, H., & Abram, V. (2005). Physico-chemical properties, composition and oxidative stability of camelina sativa oil. Food Technology and Biotechnology, 43(1), 63–70.
Ahmed, K. S. D., Stephens, C., Bistline-East, A., Williams, C. D., Mc Donnell, R. J., Carnaghi, M., Huallacháin, D. Ó., & Gormally, M. J. (2019). Biological control of pestiferous slugs using Tetanocera elata (Fabricius) (Diptera: Sciomyzidae): Larval behavior and feeding on slugs exposed to Phasmarhabditis hermaphrodita (Schneider, 1859). Biological Control, 135, 1–8.
Aladesanmi, A. J. (2006). Tetrapleura tetraptera: Molluscicidal activity and chemical constituents. African Journal of Traditional, Complementary and Alternative Medicines, 4(1), 23–36.
Amiri-Besheli, B. (2009). Toxicity appraisement of methaldehyde, ferricol, snail repellent tape and sabzarang (snail repellent paint) on land snails (Xeropicta derbentina, Xeropicta krynickii). African Journal of Biotechnology, 8(20), 5337–5342.
Ashurst, P. R. (1991). Food flavorings. Springer, New York.
Babilas, P., Knie, U., & Abels, C. (2012). Cosmetic and dermatologic use of alpha hydroxy acids. Journal of the German Society of Dermatology, 10(7), 488–491.
Balashov, I. (2016). Okhrana nazennykh molliuskov Ukrainy [Conservation of terrestrial molluscs in Ukraine]. Ruffor, Kyiv (in Russian).
Behnam, A.-B. (2009). Toxicity appraisement of methaldehyde, ferricol, snail repellent tape and sabzarang (snail repellent paint) on land snails (Xeropicta derbentina, Xeropicta krynickii). African Journal of Biotechnology, 8(20), 5337–5342.
Boyko, A. A., & Brygadyrenko, V. V. (2017). Changes in the viability of the eggs of Ascaris suum under the influence of flavourings and source materials approved for use in and on foods. Biosystems Diversity, 25(2), 162–166.
Boyko, O. O., & Brygadyrenko, V. V. (2019). The impact of acids approved for use in foods on the vitality of Haemonchus contortus and Strongyloides papillosus (Nematoda) larvae. Helminthologia, 56(3), 202–210.
Boyko, O., & Brygadyrenko, V. (2022). Nematicidal activity of organic food additives. Diversity, 14, 615.
Brophy, T., Mc Donnell, R. J., Howe, D. K., Denver, D. R., Ross, J. L., & Luong, L. T. (2020). Nematodes associated with terrestrial slugs in the Edmonton region of Alberta, Canada. Journal of Helminthology, 94, e200.
Brygadyrenko, V. V., & Nazimov, S. S. (2015). Trophic relations of Opatrum sabulosum (Coleoptera, Tenebrionidae) with leaves of cultivated and uncultivated species of herbaceous plants under laboratory conditions. Zookeys, 481, 57–68.
Burnett, C. L., Fiume, M. M., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Leibler, D. C., Marks, J. G., Shank, R. C., Slaga, T. J., Snyder, P. W., & Andersen, F. A. (2017). Safety assessment of plant-derived fatty acid oils. International Journal of Toxicology, 36(3 Suppl.), 51S–129S.
Capinera, J. L. (2018a). Assessment of barrier materials to protect plants from florida leatherleaf slug (Mollusca: Gastropoda: Veronicellidae). Florida Entomologist, 101(3), 373–381.
Capinera, J. L. (2018b). Evaluation of copper hydroxide as a repellent and feeding deterrent for Cuban brown snail (Mollusca: Gastropoda: Pleurodontidae). Florida Entomologist, 101(3), 369–372.
Capinera, J. L., & Dickens, K. (2016). Some effects of copper-based fungicides on plant-feeding terrestrial molluscs: A role for repellents in mollusc management. Crop Protection, 83, 76–82.
Clark, S. J., Dodds, C. J., Henderson, I. F., & Martin, A. P. (1997). A bioassay for screening materials influencing feeding in the field slug Deroceras reticulatum (Müller) (Mollusca: Pulmonata). Annals of Applied Biology, 130(2), 379–385.
Cordoba, M., Millar, J. G., & Mc Donnell, R. (2018). Development of a high-throughput laboratory bioassay for testing potential attractants for terrestrial snails and slugs. Journal of Economic Entomology, 111(2), 637–644.
Costa, A. M. M., Silva, L. O., & Torres, A. G. (2019). Chemical composition of commercial cold-pressed pomegranate (Punica granatum) seed oil from Turkey and Israel, and the use of bioactive compounds for samples’ origin preliminary discrimination. Journal of Food Composition and Analysis, 75, 8–16.
Cutler, J., & Rae, R. (2021). Natural variation in host-finding behaviour of gastropod parasitic nematodes (Phasmarhabditis spp.) exposed to host-associated cues. Journal of Helminthology, 95, e10.
Dodds, C. J. (1996). The control of slug damage using plant-derived repellents and antifeedants. In: Slug and snail pests in agriculture. British Crop Protection Council Symposium Proceedings. Vol. 66. Pp. 335–340.
Dodds, C. J., Henderson, I. F., Watson, P., & Leake, L. D. (1999). Action of extracts of apiaceae on feeding behavior and neurophysiology of the field slug Deroceras reticulatum. Journal of Chemical Ecology, 25(9), 2127–2145.
Egleton, M., Erdos, Z., Raymond, B., & Matthews, A. C. (2021). Relative efficacy of biological control and cultural management for control of mollusc pests in cool climate vineyards. Biocontrol Science and Technology, 31(7), 725–738.
Ehlers, V. B., & Hill, G. A. (1951). Chemical investigation of the New England horse chestnut, Aesculus hippocastanum. Journal of the American Oil Chemists’ Society, 28(2), 45–46.
Faly, L. I., Kolombar, T. M., Prokopenko, E. V., Pakhomov, O. Y., & Brygadyrenko, V. V. (2017). Structure of litter macrofauna communities in poplar plantations in an urban ecosystem in Ukraine. Biosystems Diversity, 25(1), 29–38.
Fathi, M., Ghane, M., & Pishkar, L. (2021). Phytochemical composition, antibacterial, and antibiofilm activity of Malva sylvestris against human pathogenic bacteria. Jundishapur Journal of Natural Pharmaceutical Products, 17(1), e114164.
Frank, T. (2003). Influence of slug herbivory on the vegetation development in an experimental wildflower strip. Basic and Applied Ecology, 4(2), 139–147.
González-Cruz, D., & San Martín, R. (2013). Molluscicidal effects of saponin-rich plant extracts on the grey field slug. International Journal of Agriculture and Natural Resources, 40(2), 341–349.
Gorgadze, O., Troccoli, A., Fanelli, E., Tarasco, E., & De Luca, F. (2022). Phasmarhabditis thesamica n. sp. (Nematoda: Rhabditidae), a new slug nematode from southern slope of Caucasus, Georgia. Nematology, 24(6), 617–629.
Guenay-Greunke, Y., Bohan, D. A., Traugott, M., & Wallinger, C. (2022). A multiplex PCR assay for detecting slug species common in European arable land in the diet of carabid beetles. Entomologia Generalis, 42(1), 117–126.
Gurnani, N., Gupta, M., Mehta, D., & Mehta, B. K. (2016). Chemical composition, total phenolic and flavonoid contents, and in vitro antimicrobial and antioxidant activities of crude extracts from red chilli seeds (Capsicum frutescens L.). Journal of Taibah University for Science, 10(4), 462–470.
Guzmán, E., & Lucia, A. (2021). Essential oils and their individual components in cosmetic products. Cosmetics, 8(4), 114.
Hadžifejzović, N., Kukić-Marković, J., Petrović, S., Soković, M., Glamočlija, J., Stojković, D., & Nahrstedt, A. (2013). Bioactivity of the extracts and compounds of Ruscus aculeatus L. and Ruscus hypoglossum L. Industrial Crops and Products, 49, 407–411.
Hagnell, J., Schander, C., Nilsson, M., Ragnarsson, J., Valstar, H., Wollkopf, A. M., & Von Proschwitz, T. (2006). How to trap a slug: Commercial versus homemade slug traps. Crop Protection, 25(3), 212–215.
Haites, R. E., Watt, A. E., Russell, D. A., & Billman-Jacobe, H. (2021). Infection of slugs with theronts of the ciliate protozoan, Tetrahymena rostrata. Microorganisms, 9(9), 1970.
Hanley, M. E., Shannon, R. W. R., Lemoine, D. G., Sandey, B., Newland, P. L., & Poppy, G. M. (2018). Riding on the wind: Volatile compounds dictate selection of grassland seedlings by snails. Annals of Botany, 122(6), 1075–1083.
Hicklenton, L., & Betson, M. (2019). Molecular detection of Angiostrongylus vasorum in gastropods in Surrey, UK. Parasitology Research, 118(3), 1051–1054.
Hollingsworth, R. G., Armstrong, J. W., & Campbell, E. (2002). Pest control: Caffeine as a repellent for slugs and snails. Nature, 417(6892), 915–916.
Hollingsworth, R. G., Armstrong, J. W., & Campbell, E. (2005). Caffeine as a novel toxicant for slugs and snails. Annals of Applied Biology, 142(1), 91–97.
Hoyer, S. A., & Myrick, C. A. (2012). Can copper-based substrates be used to protect hatcheries from invasion by the New Zealand mudsnail ? North American Journal of Aquaculture, 74(4), 575–583.
Huang, H.-C., Liao, S.-C., Chang, F.-R., Kuo, Y.-H., & Wu, Y.-C. (2003). Molluscicidal saponins from Sapindus mukorossi, inhibitory agents of golden apple snails, Pomacea canaliculata. Journal of Agricultural and Food Chemistry, 51(17), 4916–4919.
Ivanova, E. S., Gorgadze, O. A., Lortkhipanidze, M. A., & Spiridonov, S. E. (2021). Phasmarhabditis akhaldaba sp. n. associated with a slug Deroceras reticulatum in lesser Caucasus Mountains in Republic of Georgia. Russian Journal of Nematology, 29(1), 75–88.
Jaskulska, M., Kozłowski, J., & Kozłowska, M. (2017). Susceptibility of field bean cultivars to slug damage. Folia Malacologica, 25(4), 273–280.
Jeong, K. J., Lee, S. W., Hong, J. K., Shin, С. Y., & Yun, J. G. (2012). Effective control of slug damage through tobacco extract and caffeine solution in combination with alcohol. Horticulture, Environment, and Biotechnology, 53, 123–128.
Kafle, P., Peacock, S. J., Grond, S., Orsel, K., & Kutz, S. (2018). Temperature-dependent development and freezing survival of protostrongylid nematodes of Arctic ungulates: Implications for transmission. Parasites and Vectors, 11, 400.
Kaškonienė, V., Kaškonas, P., Jalinskaitė, M., & Maruška, A. (2011). Chemical composition and chemometric analysis of variation in essential oils of Calendula officinalis L. during vegetation stages. Chromatographia, 73, 163–169.
Khedher, M. R. B., Khedher, S. B., Chaieb, I., Tounsi, S., & Hammami, M. (2017). Chemical composition and biological activities of Salvia officinalis essential oil from Tunisia. EXCLI Journal, 16, 160–173.
Kim, J. R., Wong, T. M., Curry, P. A., Yeung, N. W., Hayes, K. A., & Cowie, R. H. (2019). Modelling the distribution in Hawaii of Angiostrongylus cantonensis (rat lungworm) in its gastropod hosts. Parasitology, 146(1), 42–49.
Kozłowski, J., Jaskulska, M., & Kozłowski, R. J. (2016). Activity of plant-derived chemical compounds in reducing damage of plants by slugs. Przemysl Chemiczny, 95(6), 1206–1209.
Kozłowski, J., Kałuski, T., Jaskulska, M., & Kozłowska, M. (2010). Initial evaluation of the effectiveness of selected active substances in reducing damage to rape plants caused by Arion lusitanicus (Gastropoda, Pulmonata, Arionidae). Journal of Plant Protection Research, 50(4), 520–526.
Lindqvist, I., Lindqvist, B., & Tiilikkala, K. (2010). Birch tar oil is an effective mollusc repellent: Field and laboratory experiments using Arianta arbustorum (Gastropoda: Helicidae) and Arion lusitanicus (Gastropoda: Arionidae). Agricultural and Food Science, 19(1), 1–12.
Linhart, Y. B., & Thompson, J. D. (1995). Terpene-based selective herbivory by Helix aspersa (Mollusca) on Thymus vulgaris (Labiatae). Oecologia, 102(1), 126–132.
Maier, C., Conrad, J., Carle, R., Weiss, J., & Schweiggert, R. M. (2015). Phenolic constituents in commercial aqueous quillaja (Quillaja saponaria Molina) wood extracts. Journal of Agricultural and Food Chemistry, 63(6), 1756–1762.
Martynov, V. O., Hladkyi, O. Y., Kolombar, T. M., & Brygadyrenko, V. V. (2019). Impact of essential oil from plants on migratory activity of Sitophilus granarius and Tenebrio molitor. Regulatory Mechanisms in Biosystems, 10(4), 359–371.
Martynov, V. O., Titov, O. G., Kolombar, T. M., & Brygadyrenko, V. V. (2019). Influence of essential oils of plants on the migration activity of Tribolium confusum (Coleoptera, Tenebrionidae). Biosystems Diversity, 27(2), 177–185.
Mc Donnell, R. J., Colton, A. J., Howe, D. K., & Denver, D. R. (2020). Lethality of four species of Phasmarhabditis (Nematoda: Rhabditidae) to the invasive slug, Deroceras reticulatum (Gastropoda: Agriolimacidae) in laboratory infectivity trials. Biological Control, 150, 104349.
Moshkin, V. S., & Brygadyrenko, V. V. (2022). Influence of air temperature and humidity on Stratiolaelaps scimitus (Acari, Laelapidae) locomotor activity a laboratory experiment. Biosystems Diversity, 28(2), 281–289.
Naik, S. N., Saxena, D. K., Dole, B. R., & Khare, S. K. (2018). Potential and perspective of castor biorefinery. In: Bhaskar, T., Pandey, A., Mohan, S. V., Lee, D.-J., & Khanal, S. K. (Eds.). Waste biorefinery. Elsevier. Pp. 623–656.
Nollet, L. M. L., & Rathore, H. S. (Eds.). (2017). Green pesticides handbook: Essential oils for pest control. CRC Press.
Okoh, O. O., Sadimenko, A. P., Asekun, O. T., & Afolayan, A. J. (2008). The effects of drying on the chemical components of essential oils of Calendula officinalis L. African Journal of Biotechnology, 7(10), 1500–1502.
Parhomenko, O. V., Kolomiichuk, S. V., Omelianov, D. D., & Brygadyrenko, V. V. (2022). Potential use of synthetic and natural aromatic mixtures in prevention from Shelfordella lateralis сockroaches. Regulatory Mechanisms in Biosystems, 13(2), 174–179.
Piechowicz, B., Grodzicki, P., Ząbkiewicz, P., Sobczyk, A., Dąbrowska, A., Piechowicz, I., Pieniążek, M., Balawejder, M., & Zaręba, L. (2018). Components of the smell of beer as enticing factor for invasive slugs Arion lusitanicus non-mabille. Ecological Chemistry and Engineering, A, 25(2), 133–151.
Radwan, M. A., & Gad, A. F. (2021). Essential oils and their components as promising approach for gastropod mollusc control: A review. Journal of Plant Diseases and Protection, 128, 923–949.
Reichardt, C., & Welton, T. (2010). Solvents and solvent effects in organic chemistry. Fourth Edition. John Wiley & Sons, Inc.
Schüder, I., Port, G., & Bennison, J. (2003). Barriers, repellents and antifeedants for slug and snail control. Crop Protection, 22(8), 1033–1038.
Schüder, I., Port, G., & Bennison, J. (2004). The behavioural response of slugs and snails to novel molluscicides, irritants and repellents. Pest Management Science, 60(12), 1171–1177.
Schurkman, J., Dodge, C., Mc Donnell, R., Tandingan De Ley, I., & Dillman, A. R. (2021). Lethality of Phasmarhabditis spp. (P. hermaphrodita, P. californica, and P. papillosa) nematodes to the grey field slug Deroceras reticulatum on canna lilies in a lath house. Agronomy, 12(1), 20.
Segeritz, L., Westhoff, K. M., Schaper, R., Hermosilla, C., & Taubert, A. (2022). Angiostrongylus vasorum, Aelurostrongylus abstrusus, Crenosoma vulpis and Troglostrongylus brevior infections in native slug populations of Bavaria and Baden-Wuerttemberg in Germany. Pathogens, 11(7), 747.
Sengupta, A., Basu, S. P., & Saha, S. (1975). Triglyceride composition of Sapindus mukorossi seed oil. Lipids, 10, 33–40.
Shannon, R. W., Félix, A. E., Poppy, G. M., Newland, P. L., van Dam, N. M., & Hanley, M. E. (2016). Something in the air? The impact of volatiles on mollusc attack of oilseed rape seedlings. Annals of Botany, 117(6), 1073–1082.
Snoussi, M., Dehmani, A., Noumi, E., Flamini, G., & Papetti, A. (2016). Chemical composition and antibiofilm activity of Petroselinum crispum and Ocimum basilicum essential oils against Vibrio spp. strains. Microbial Pathogenesis, 90, 13–21.
Titov, O., & Brygadyrenko, V. (2021). Influence of synthetic flavorings on the migration activity of Tribolium confusum and Sitophilus granarius. Ekologia (Bratislava), 40(2), 163–177.
Tolhurst, B. A., Overall, A. D. J., King, P. J., Morgan, E. R., & Baker, R. J. (2021). Co-occurrence of domestic dogs and gastropod molluscs in public dog-walking spaces and implications for infection with Angiostrongylus vasorum: A preliminary study. Animals, 11(9), 2577.
Veasey, R., Cordoba, M., Colton, A., Fujimoto, L., Dodge, C., Foley, I., Adams, G., Anderson, T., Merenz, R., Hara, A., Roda, A., Millar, J., & Mc Donnell, R. (2021). Fermenting bread dough as a cheap, effective, nontoxic, and generic attractant for pest snails and slugs. Insects, 12(4), 328.
Vokou, D., Tziolas, M., & Bailey, S. E. R. (1998). Essential-oil-mediated interactions between oregano plants and helicidae grazers. Journal of Chemical Ecology, 24, 1187–1202.
Watkins, R. W., Mosson, H. J., Gurney, J. E., Cowan, D. P., & Edwards, J. P. (1996). Cinnamic acid derivatives: Novel repellent seed dressings for the protection of wheat seed against damage by the field slug, Deroceras reticulatum. Crop Protection, 15(1), 77–83.
Wiktor, A. (2000). Agriolimacidae (Gastropoda: Pulmonata) – a systematic monograph. Annales Zoologici, 49(3), 347–590.
Wood, W., & Ligare, M. (2008). (2 E,6 Z)-2,6-Nonadienal a banana slug antifeedant from crushed leaves of Tolmiea menziesii and Disporum smithii. Biochemical Systematics and Ecology, 36(11), 875–876.
Wool, R. P. (2005). Polymers and composite resins from plant oils. In: Wool, R. P., & Sun, X. S. (Eds.). Bio-based polymers and composites. Academic Press. Pp. 56–113.
How to Cite
Remezok, M., Kolombar, T. M., Parhomenko, O. V., & Brygadyrenko, V. V. (2022). Influence of aromatic substances on locomotor activity of Deroceras agreste slugs . Regulatory Mechanisms in Biosystems, 13(3), 247-256. Retrieved from

Most read articles by the same author(s)

> >>