The influence of the synthetic food colourings tartrazine, allura red and indigo carmine on the body weight of Tenebrio molitor (Coleoptera, Tenebrionidae) larvae

  • V. O. Martynov Oles Honchar Dnipro National University
  • V. V. Brygadyrenko Oles Honchar Dnipro National University
Keywords: food additives; azo compound colourings; saprophages; ecotoxicology; healthy diet; substances for protecting plants


Substances for protecting plants often contain colourings, the impact of which on invertebrates has been studied insufficiently. The addition of food colourings in different concentrations to the diet of saprophage beetles can affect their metabolism, causing loss of body weight. In the experiment, we determined the impact of tartrazine, allura red and indigo carmine on the body weight of Tenebrio molitor Linnaeus, 1758 larvae. The substances were added to their fodder at five concentrations (1, 0.1, 0.01, 0.001 and 0.0001 g/kg of dry fodder) during a 21-day experiment. Statistically significant data on changes in the body weight of T. molitor larvae were received after adding 1 g/kg concentration of indigo carmine and 0.1 and 1 g/kg concentrations of tartrazine. In the other variants of the experiment, no statistically significant differences were determined. Tartrazine, allura red and indigo carmine cause decrease in the body weight of T. molitor larvae, depending on the concentration of the colouring. The toxic effect of synthetic food colourings on living organisms and the low number of studies devoted to such impact on insects indicate the relevance and necessity for further research in this sphere.


Aboel-Zahab, H., El-Khyat, Z., Sidhom, G., Awadallah, R., Abdel-al, W., & Mahdy, K. (1997). Physiological effects of some synthetic food colouring additives on rats. Bollettino Chimico Farmaceutico, 136, 615–627.

Abramsson-Zetterberg, L., & Ilbäck, N.-G. (2013). The synthetic food colouring agent Allura Red AC (E129) is not genotoxic in a flow cytometry-based micronucleus assay in vivo. Food and Chemical Toxicology, 59, 86–89.

Amin, K. A., Abdel Hameid, H., & Abd Elsttar, A. H. (2010). Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats. Food and Chemical Toxicology, 48(10), 2994–2999.

Ashida, H., Hashimoto, T., Tsuji, S., Kanazawa, K., & Danno, G. (2000). Synergistic effects of food colors on the toxicity of 3-amino-1,4-dimethyl-5H-pyrido[4,3-b]indole (Trp-P-1) in primary cultured rat hepatocytes. Journal of Nutritional Science and Vitaminology, 46(3), 130–136.

Borzelleca, J. F., & Hallagan, J. B. (1988). A chronic toxicity/carcinogenicity study of FD & C Yellow No. 5 (tartrazine) in mice. Food and Chemical Toxicology, 26(3), 189–194.

Borzelleca, J. F., & Hallagan, J. B. (1988). Chronic toxicity/carcinogenicity studies of FD & C Yellow No. 5 (tartrazine) in rats. Food and Chemical Toxicology, 26(3), 179–187.

Borzelleca, J. F., Olson, J. W., & Reno, F. E. (1989). Lifetime toxicity/carcinogenicity study of FD & C Red No. 40 (Allura Red) in Sprague-Dawley rats. Food and Chemical Toxicology, 27(11), 701–705.

Brygadyrenko, V. V. (2016). Influence of litter thickness on the structure of litter macrofauna of deciduous forests of Ukraine’s steppe zone. Visnyk of Dnipropetrovsk University. Biology, Ecology, 24(1), 240–248.

Brygadyrenko, V., & Nazimov, S. (2015). Trophic relations of Opatrum sabulosum (Coleoptera, Tenebrionidae) with leaves of cultivated and uncultivated species of herbaceous plants under laboratory conditions. ZooKeys, 481, 57–68.

Campos, R., Kandelbauer, A., Robra, K., Cavaco-Paulo, A., & Gübitz, G. (2001). Indigo degradation with purified laccases from Trametes hirsuta and Sclerotium rolfsii. Journal of Biotechnology, 89(2–3), 131–139.

Chung, K.-T., Fulk, G. E., & Andrews, A. W. (1978). The mutagenicity of methyl orange and metabolites produced by intestinal anaerobes. Mutation Research/Genetic Toxicology, 58(2–3), 375–379.

Collins, T. F. X., Black, T. N., O’Donnell, M. W., & Bulhack, P. (1992). Study of the teratogenic potential of FD & C Yellow No. 5 when given in drinking-water. Food and Chemical Toxicology, 30(4), 263–268.

Collins, T. F. X., Black, T. N., Welsh, J. J., & Brown, L. H. (1985). Study of the teratogenic potential of Fd&C Red No. 40 when given in drinking water. Toxicology and Industrial Health, 5(6), 937–948.

Collins, T. F. X., Black, T. N., Welsh, J. J., & Brown, L. H. (1989). Study of the teratogenic potential of FD & C Red No. 40 when given by gavage to rats. Food and Chemical Toxicology, 27(11), 707–713.

Combes, R. D., & Haveland-Smith, R. B. (1982). A review of the genotoxicity of food, drug and cosmetic colours and other azo, triphenylmethane and xanthene dyes. Mutation Research/Reviews in Genetic Toxicology, 98(2), 101–243.

Das, A., & Mukherjee, A. (2004). Genotoxicity testing of the food colours amaranth and tartrazine. International Journal of Human Genetics, 4(4), 277–280.

Davis, K. J., Fitzhugh, O. G., & Nelson, A. A. (1964). Chronic rat and dog toxicity studies on tartrazine. Toxicology and Applied Pharmacology, 6(5), 621–626.

Devlin, J., & David, T. J. (1992). Tartrazine in atopic eczema. Archives of Disease in Childhood, 67(6), 709–711.

Elhkim, M. O., Héraud, F., Bemrah, N., Gauchard, F., Lorino, T., Lambré, C., & Poul, J.-M. (2007). New considerations regarding the risk assessment on Tartrazine. Regulatory Toxicology and Pharmacology, 47(3), 308–316.

El-Wahab, H. M. F. A., & Moram, G. S. E.-D. (2012). Toxic effects of some synthetic food colorants and/or flavor additives on male rats. Toxicology and Industrial Health, 29(2), 224–232.

Ershoff, B. H. (1977). Effects of diet on growth and survival of rats fed toxic levels of tartrazine (FD&C Yellow No. 5) and sunset yellow FCF (FD&C Yellow No. 6). The Journal of Nutrition, 107(5), 822–828.

Gaunt, I. F., Grasso, P., Kiss, I. S., & Gangolli, S. D. (1969). Short-term toxicity study on indigo carmine in the pig. Food and Cosmetics Toxicology, 7, 17–24.

Gautam, D., Sharma, G., & Goyal, R. P. (2010). Evaluation of toxic impact of tartrazine on male Swiss albino mice. Pharmacologyonline, 1, 133–140.

Himri, I., Bellahcen, S., Souna, F., Belmekki, F., Aziz, M., Bnouham, M., Zoheir, J., Berkia, Z., Mekhfi, H., & Saalaoui, E. (2011). A 90-day oral toxicity study of tartrazine, a synthetic food dye, in Wistar rats. International Journal of Pharmacy and Pharmaceutical Sciences, 3, 159–169.

Himri, I., Guaadaoui, A. H., Souna, F., Bouakka, M., Melhaoui, A., Hakkou, A., & Saalaoui, E. (2013). Toxicity testing of tartrazine using the nematode Caenorhabditis elegans, brine shrimp larvae (Artemia salina) and KGN granulosa cell line. Journal of Applied Pharmaceutical Science, 3, 51–58.

Hooson, J., Gaunt, I. F., Kiss, I. S., Grasso, P., & Butterworth, K. R. (1975). Long-term toxicity of indigo carmine in mice. Food and Cosmetics Toxicology, 13(2), 167–176.

Jabeen, H. S., ur Rahman, S., Mahmood, S., & Anwer, S. (2012). Genotoxicity assessment of amaranth and allura red using Saccharomyces cerevisiae. Bulletin of Environmental Contamination and Toxicology, 90(1), 22–26.

Kamel, M. M., & El-lethey, H. S. (2011). The potential health hazard of tartrazine and levels of hyperactivity, anxiety-like symptoms, depression and anti-social behaviour in rats. Journal of American Science, 7, 1211–1218.

Kroes, R., & Kozianowski, G. (2002). Threshold of toxicological concern (TTC) in food safety assessment. Toxicology Letters, 127(1–3), 43–46.

Lison, L. (1937). Études histophysiologiques sur les tubes de Malpighi des insectes. I. Élimination des colorants acides par le tube de Malpighi chez les Orthoptères. Archives De Biologie, 48, 321–360.

Lison, L. (1938). Études histophysiologiques sur les Tubes de Malpighi des Insectes. Zeitschrift Für Zellforschung Und Mikroskopische Anatomie, 28(2), 179–209.

MacDonald, R. S. (2000). The role of zinc in growth and cell proliferation. The Journal of Nutrition, 130(5), 1500S–1508S.

Maddrell, S. H. P., Gardiner, B. O. C., Pilcher, D. E. M., & Reynolds, S. E. (1974). Active transport by insect malpighian tubules of acidic dyes and of acrylamides. Journal of Experimental Biology, 61, 357–377.

Maekawa, A., Matsuoka, C., Onodera, H., Tanigawa, H., Furuta, K., Kanno, J., & Ogiu, T. (1987). Lack of carcinogenicity of tartrazine (FD & C Yellow No. 5) in the F344 rat. Food and Chemical Toxicology, 25(12), 891–896.

Mannell, W. A., Grice, H. C., & Allmark, M. G. (1962). Chronic toxicity studies on food colours: V. Observations on the toxicity of brilliant blue FCF, guinea green B and benzyl violet 4B in rats. Journal of Pharmacy and Pharmacology, 14(1), 378–384.

Martynov, V. O., & Brygadyrenko, V. V. (2017). The influence of synthetic food additives and surfactants on the body weight of larvae of Tenebrio molitor (Coleoptera, Tenebrionidae). Biosystems Diversity, 25(3), 236–242.

McCann, D., Barrett, A., Cooper, A., Crumpler, D., Dalen, L., Grimshaw, K., & Stevenson, J. (2007). Food additives and hyperactive behaviour in 3-year-old and 8/9-year-old children in the community: A randomised, double-blinded, placebo-controlled trial. The Lancet, 370(9598), 1560–1567.

Mehedi, N., Ainad-Tabe, S., Mokrane, N., Addou, S., Zaoui, C., Kheroua, O., & Saidi, D. (2009). Reproductive toxicology of tartrazine (FD and C yellow No. 5) in Swiss Albino mice. American Journal of Pharmacology and Toxicology, 4(4), 130–135.

Mekkawy, H. A., Ali, M. O., & El-Zawahry, A. M. (1998). Toxic effect of synthetic and natural food dyes on renal and hepatic functions in rats. Toxicology Letters, 95, 155.

Mohamed, A. A.-R., Galal, A. A. A., & Elewa, Y. H. A. (2015). Comparative protective effects of royal jelly and cod liver oil against neurotoxic impact of tartrazine on male rat pups brain. Acta Histochemica, 117(7), 649–658.

Moutinho, I., Bertges, L., & Assis, R. (2007). Prolonged use of the food dye tartrazine (FD&C yellow n° 5) and its effects on the gastric mucosa of Wistar rats. Brazilian Journal of Biology, 67(1), 141–145.

Mpountoukas, P., Pantazaki, A., Kostareli, E., Christodoulou, P., Kareli, D., Poliliou, S., & Lialiaris, T. (2010). Cytogenetic evaluation and DNA interaction studies of the food colorants amaranth, erythrosine and tartrazine. Food and Chemical Toxicology, 48(10), 2934–2944.

Nakajima, K. (2005). Alkalibacterium iburiense sp. nov., an obligate alkaliphile that reduces an indigo dye. International Journal of Systematic and Evolutionary Microbiology, 55(4), 1525–1530.

Neuman, I., Elian, R., Nahum, H., Shaked, P., & Creter, D. (1978). The danger of “yellow dyes” (tartrazine) to allergic subjects. Clinical Experimental Allergy, 8(1), 65–68.

Nicholson, S. K., & John, P. (2004). Bacterial indigo reduction. Biocatalysis and Biotransformation, 22(5–6), 397–400.

Nicholson, S. K., & John, P. (2005). The mechanism of bacterial indigo reduction. Applied Microbiology and Biotechnology, 68(1), 117–123.

Nijhout, H. F. (1975). Excretory role of the midgut in larvae of the tobacco hornworm, Manduca sexta (L.). Journal of Experimental Biology, 62, 221–230.

Olusegun, E. T., & Olajire, A. A. (2015). Toxicity of food colours and additives: A review. African Journal of Pharmacy and Pharmacology, 9(36), 900–914.

Palm, N. B. (1952). Storage and excretion of vital dyes in insects with special regard to trypan blue. Arkiv för Zoologi, 3, 195–272.

Patterson, R. M., & Butler, J. S. (1982). Tartrazine-induced chromosomal aberrations in mammalian cells. Food and Chemical Toxicology, 20(4), 461–465.

Ramya, M., Anusha, B., & Kalavathy, S. (2007). Decolorization and biodegradation of indigo carmine by a textile soil isolate Paenibacillus larvae. Biodegradation, 19(2), 283–291.

Reyes, F. G. R., Valim, M. F. C. F. A., & Vercesi, A. E. (1996). Effect of organic synthetic food colours on mitochondrial respiration. Food Additives and Contaminants, 13(1), 5–11.

Rus, V., Gherman, C., Miclăuş, V., Mihalca, A., & Nadăş, G. C. (2010). Comparative toxicity of food dyes on liver and kidney in guinea pigs: A histopathological study. Annals of the Romanian Society for Cell Biology, 15, 161–165.

Sadar, P., Dande, P., Kulkami, N., & Pachori, R. (2017). Evaluation of toxicity of synthetic food colors on human normal flora and yeast. International Journal of Health Sciences and Research, 7, 110–114.

Sasaki, Y. F., Kawaguchi, S., Kamaya, A., Ohshita, M., Kabasawa, K., Iwama, K., & Tsuda, S. (2002). The comet assay with 8 mouse organs: Results with 39 currently used food additives. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 519(1–2), 103–119.

Schab, D. W., & Trinh, N.-H. T. (2004). Do artificial food colors promote hyperactivity in children with hyperactive syndromes? A meta-analysis of double-blind placebo-controlled trials. Journal of Developmental and Behavioral Pediatrics, 25(6), 423–434.

Shimada, C., Kano, K., Sasaki, Y. F., Sato, I., & Tsudua, S. (2010). Differential colon DNA damage induced by azo food additives between rats and mice. The Journal of Toxicological Sciences, 35(4), 547–554.

Shousha, M. A., Sakr, A. A., Hammam, M. A., & Abdel-Moein, N. M. (1992). Effect of synthetic banana food additives on energy and nucleic acids metabolism in brain, liver and kidney tissues of albino rats. Egyptian Journal of Applied Sciences, 7, 45–55.

Shrestha, S., Bhattarai, B. R., Lee, K., & Cho, H. (2006). Some of the food color additives are potent inhibitors of human protein tyrosine phosphatases. Bulletin of the Korean Chemical Society, 27(10), 1567–1571.

Stenius, B. S. M., & Lemola, M. (1976). Hypersensitivity to acetylsalicylic acid (ASA) and tartrazine in patients with asthma. Clinical Experimental Allergy, 6(2), 119–129.

Tanaka, T. (2006). Reproductive and neurobehavioural toxicity study of tartrazine administered to mice in the diet. Food and Chemical Toxicology, 44(2), 179–187.

Tanaka, T., Takahashi, O., Oishi, S., & Ogata, A. (2008). Effects of tartrazine on exploratory behavior in a three-generation toxicity study in mice. Reproductive Toxicology, 26(2), 156–163.

Tsuda, S. (2001). DNA damage induced by red food dyes orally administered to pregnant and male mice. Toxicological Sciences, 61(1), 92–99.

Visweswaran, B. (2012). Oxidative stress by tartrazine in the testis of Wistar rats. IOSR Journal of Pharmacy and Biological Sciences, 2(3), 44–47.

Vorhees, C. V., Butcher, R. E., Brunner, R. L., Wootten, V., & Sobotka, T. J. (1983). Developmental toxicity and psychotoxicity of FD and C red dye no. 40 (Allura red AC) in rats. Toxicology, 28(3), 207–217.

Wang, L., Zhang, G., & Wang, Y. (2014). Binding properties of food colorant allura red with human serum albumin in vitro. Molecular Biology Reports, 41(5), 3381–3391.

How to Cite
Martynov, V. O., & Brygadyrenko, V. V. (2018). The influence of the synthetic food colourings tartrazine, allura red and indigo carmine on the body weight of Tenebrio molitor (Coleoptera, Tenebrionidae) larvae. Regulatory Mechanisms in Biosystems, 9(4), 479-484.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.