Bactericidal, protistocidal and nematodicidal properties of mixtures of alkyldimethylbenzyl ammonium chloride, didecyldimethyl ammonium chloride, glutaraldehyde and formaldehyde

  • V. V. Zazharskyi Dnipro State Agrarian and Economic University
  • P. Davydenko Dnipro State Agrarian and Economic University
  • O. Kulishenko Dnipro State Agrarian and Economic University
  • V. Chumak Dnipro State Agrarian and Economic University
  • A. Kryvaya Dnipro State Agrarian and Economic University
  • I. A. Biben Dnipro State Agrarian and Economic University
  • N. M. Tishkina Dnipro State Agrarian and Economic University
  • I. Borovik Dnipro State Agrarian and Economic University
  • O. O. Boyko Dnipro State Agrarian and Economic University
  • V. V. Brygadyrenko Oles Honchar Dnipro National University
Keywords: disinfectant; bactericidal action; toxicity; Paramecium caudatum; Tetrahymena pyriformis; Haemonchus contortus


We conducted a comparative analysis of the impact of disinfecting preparations on the cryogenic stains of microorganisms, and also on Haemonchus contortus (Rudolphi 1803), invasive larvae of the ruminants. To test the preparations for disinfection, we used laboratory analyses with methods of biotesting, particularly with the use of Paramecium caudatum Her., Tetrahymena pyriformis Ehrenberg. We researched mixtures of substances: alkylbenzyldimethylammonium chloride (C24H42IN, BAK, mixture of homologues alkylbenzyldimethylammonium chloride and with n-C12H25, n-C14H29 and n-C16H33), didecyldimethylammonium Chloride (DDAC, C22H48ClN) and glutaraldehyde (C5H8O2); formaldehyde (CH2O), alkylbenzyldimethylammonium chloride and glutaraldehyde in 1% have bactericidal properties for the following cryogenic strains of microorganisms: Staphylococcus аureus, Salmonella typhimurium, Escherichia coli, Listeria monocytogenes, Proteus vulgaris, Serracia marcescens, Pseudomonas аeruginosa, Enterococcus faecalis and Yersinia enterocolitica. The Bacillus сereus were affected by the preparations bacteriostatically: we observed growth in the colonies in the medium with addition of 1% solution of mixture of alkylbenzyldimethylammonium chloride and didecyldimethylammonium chloride, and also 1%, 5% and 10% of solution of mixture of glutaraldehyde, formaldehyde and alkylbenzyldimethylammonium chloride. Also, these mixtures of substances have nematocidal properties. Death of 100% of L3H. contortus after 24 hour exposure was observed with use of 1% solution of mixture of alkylbenzyldimethylammonium chloride and didecyldimethylammonium chloride, and also 5% glutaraldehyde, formaldehyde and alkylbenzyldimethylammonium chloride. Effective disinfection measures perform a leading role in providing stable veterinary well-being of livestock and healthcare of the population. Maximum toxicity during usage of the mixtures on P. caudatum was observed for the mixture of alkylbenzyldimethylammonium chloride and didecyldimethylammonium chloride, and also for formaldehyde and glutaraldehyde. The lowest toxicity for T. pyriformis was observed with use of the mixture of glutaraldehyde, sodium dodecylsulfate (SDS) and oleum terebinthini, and also the mixture of formaldehyde and glutaraldehyde, the highest formaldehyde and alkylbenzyldimethylammonium chloride. Thus, the most promising mixtures for use in veterinary medicine were determined to the following: alkylbenzyldimethylammonium chloride, didecyldimethylammonium chloride and glutaraldehyde, and also formaldehyde, alkylbenzyldimethylammonium chloride and glutaraldehyde.


Blondeau, J. M., Borsos, S., & Hesje, C. K. (2007). Antimicrobial efficacy of gatifloxacin and moxifloxacin with and without benzalkonium chloride compared with ciprofloxacin and levofloxacin against methicillin-resistant Staphylococcus aureus. Journal of Chemotherapy, 19(2), 146–151.

Boyko, A. A., & Brygadyrenko, V. V. (2017a). Changes in the viability of the eggs of Ascaris suum under the influence of flavourings and source materials approved for use in and on foods. Biosystems Diversity, 25(2), 162–166.

Boyko, A. A., & Brygadyrenko, V. V. (2017b). Changes in the viability of Strongyloides ransomi larvae (Nematoda, Rhabditida) under the influence of synthetic flavourings. Regulatory Mechanisms in Biosystems, 8(1), 36–40.

Boyko, О. О., & Brygadyrenko, V. V. (2018a). The impact of certain flavourings and preser-vatives on the survivability of larvae of nematodes of Ruminantia. Regulatory Mechanisms in Biosystems, 9(1), 118–123.

Boyko, О. О., Gavrilina, O. G., Gavrilin, P. N., Gugosyan, Y. A., & Brygadyrenko, V. V. (2018b). Influence of formic acid on the vitality of Strongyloides papillosus. Regulatory Mechanisms inBiosystems, 9(3), 435–439.

Braoudaki, M., & Hilton, A. C. (2005). Mechanisms of resistance in Salmonella enterica adapted to erythromycin, benzalkonium chloride and triclosan. International Journal of Antimicrobial Agents, 25(1), 31–37.

Bridier, A., Briandet, R., Thomas, V., & Dubois-Brissonnet, F. (2011). Comparative biocidal activity of peracetic acid, benzalkonium chloride and ortho-phthalaldehyde on 77 bacterial strains. Journal of Hospital Infection, 78(3), 208–213.

Chen, N. H., Djoko, K. Y., Veyrier, F. J., & McEwan, A. G. (2016). Formaldehyde stress responses in bacterial pathogens. Frontiers in Microbiology, 7, 257.

del Carmen Velazquez, L., Barbini, B. N., Escudero, M. E., & Estrada, C. L., de Guzman, A. M. S. (2009). Evaluation of chlorine, benzalkonium chloride and lactic acid as sanitizers for reducing Escherichia coli O157:H7 and Yersinia enterocolitica on fresh vegetables. Food Control, 20(3), 262–268.

Fazlara, A., & Ekhtelat, M. (2012). The disinfectant effects of benzalkonium chloride on some important foodborne pathogens. American-Eurasian Journal of Agricultural and Environmental Sciences, 12(1), 23–29.

Hattori, N., Sakakibara, T., Kajiyama, N., Igarashi, T., Maeda, M., & Murakami, S. (2003). Enhanced microbial biomass assay using mutant luciferase resistant to benzalkonium chloride. Analytical Biochemistry, 319(2), 287–295.

Ibusquiza, P. S., Herrera, J. J. R., & Cabo, M. L. (2011). Resistance to benzalkonium chloride, peracetic acid and nisin during formation of mature biofilms by Listeria monocytogenes. Food Microbiology, 28(3), 418–425.

Ioannou, C. J., Hanlon, G. W., & Denyer, S. P. (2007). Action of disinfectant quaternary ammonium compounds against Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 51(1), 296–306.

Ivancovic, T., Hrenovic, J., & Matonickin-Kepcija, R. (2013). Resistance of bioparticles formed of phosphate-accumulating bacteria and zeolite to harsh environmental conditions. The Journal of Bioadhesion and Biofilm Research, 29(6), 641–649.

Kotsumbas, I. Y., Malyk, O. G., & Paterega, I. P. (2006). Doklinichni doslidzhennya veterinarnih likarskih zasobiv [Preclinical studies of veterinary medicinal products]. Triada Plus, Lviv (in Ukrainian).

Kovalenko, V. L., Gnatenko, A. V., & Ponomarenko, G. V. (2012). Porivnialne vyznatchennya toksichnosti bacteritsydnyh zasobiv za pokaznykamy gostroyi toksychnosti ta alternatyvnyh metodiv [Comparative definition of toxicity of bactericidal agents on indicators of acute toxicity and alternative methods]. Problems of Zoinengineering and Veterinary Medicine, 25(2), 169–173 (in Ukrainian).

Kovalenko, V. L., Lyasota, V. P., & Balats'kij, Y. O. (2014). Viznachennya toksichnostі dezіnfіkuyuchogo preparatu “Geotsid” z vikoristannyam іnfuzoriji Tetrachynema pyriformis [Determination of the toxicity of the disinfectant "Geocid" using the Tetrachynema pyriformis infusoria]. Problems of Zoinengineering and Veterinary Medicine, 29(2), 262–265 (in Ukrainian).

Lasemi, E., Kalantar, M. H., Navi, M. F., Rezae, M., Nikfar, N. H., Danial, Z., & Azizpour, R. (2017). Effects of different times of glutaraldehyde 2% on Bacillus subtilis spores (in vitro). Hospital Practices and Research, 2(4), 118–121.

Mc Cay, P. H., Ocampo-Sosa, A. A., & Fleming, G. T. (2010). Effect of subinhibitory concentrations of benzalkonium chloride on the competitiveness of Pseudomonas aeruginosa grown in continuous culture. Microbiology, 156(1), 30–38.

Miyoshi, N., Kawano, T., & Tanaka, M. (2003). Use of Paramecium species in bioassays for environmental risk management: Determination of LC50 values for water pollutants. Journal of Health Science, 49(6), 429–435.

Ousaa, A., Elidrissi, B., Ghamali, M., Chtita, S., Aouidate, A., Bouachrine, M., & Lakhlifi, T. (2018). Quantitative structure-toxicity relationship studies of aromatic aldehydes to Tetrahymena pyriformis based on electronic and topological descriptors. Journal of Materials and Environmental Science, 9(1), 256–266.

Palіj, А. P., & Sumakova, N. V. (2018). Viznachennya dezіnvazіjnikh vlastivostej dezzasobu “FАG” [Determination of disinfesive properties of disinfection "FAG"]. Veterinary Biotechnology, 32(2), 405–412.

Shirron, N., Kisluk, G., Zelikovich, Y., Eivin, I., Shimoni, E., & Yaron, S. (2009). A comparative study assaying commonly used sanitizers for antimicrobial activity against indicator bacteria and a Salmonella typhimurium strain on fresh produce. Journal of Food Protection, 72(11), 2413–2417.

Simões, M., Simões, L. C., Pereira, M. O., & Vieira, M. J. (2008). Sodium dodecyl sulfate allows the persistence and recovery of biofilms of Pseudomonas fluorescens formed under different hydrodynamic conditions. Biofouling, 24(1), 35–44.

Tiwari, T. S., Ray, P. B., Jost, K. C., Rathod, M. K., Zhang, Y., Brown-Elliott, B. A., Hendricks, K., & Wallace, R. J. (2003). Forty years of disinfectant failure: Outbreak of postinjection Mycobacterium abscessus infection caused by contamination of benzalkonium chloride. Clinical Infectious Diseases, 36(8), 954–962.

Vaerewijck, M., Sabbe, K., Bare, J., Spengler, H.-P., Favoreel, H., & Houf, K. (2012). Assessment of the efficacy of benzalkonium chloride and sodium hypochlorite against Acanthamoeba polyphaga and Tetrahymena spp. Journal of Food Protection, 75(3), 541–546.

Venkateswara Rao, J., Gunda, V., Srikanth, K., & Arepalli, S. K. (2007). Acute toxicity bioassay using Paramecium caudatum, a key member to study the effects of monocrotophos on swimming behaviour, morphology and reproduction. Toxicological and Environmental Chemistry, 89(2), 307–317.

Walsh, S. E., Maillard, J.-Y., Catrenich, C. E., Charbonneau, D. L., & Bartolo, R. G. (2003). Activity and mechanisms of action of selected biocidal agents on Gram-positive and negative bacteria. Journal of Applied Microbiology, 94(2), 240–247.

Yoshimatsu, T., & Hiyama, K. (2007). Mechanism of the action of didecyldimethylammonium chloride (DDAC) against Escherichia coli and morphological changes of the cells. Biocontrol Science, 12(3), 93–99.

Zasєkіn, D. А., Dimko, R. O., & Kovalenko, V. L. (2016). Efektivnіst' dezіnfektantu na osnovі organіchnikh kislot ta nanochastinok metalіv shhodo test-kul'tur mіkroorganіzmіv [Efficiency of disinfectant based on organic acids and nanoparticles of metals in relation to test cultures of microorganisms]. Problems of Zoinengineering and Veterinary Medicine, 30(2), 358–360 (in Ukrainian).

Zazharskyi, V. V., Davydenko, P., Kulishenko, O., Chumak, V., Kryvaya, A., Babaruk, A., & Borovik, I. (2018b). Porіvnyal'na otsіnka bakteritsidnikh vlastivostej dezіnfektantіv [Comparative assessment of bactericidal properties of disinfectants]. Bulletin of the Sumy National Agrarian University, 42(1), 273–276 (in Ukrainian).

Zazharskyi, V. V., Fotinа, T. I., Berezovsky, A. V., Davydenko, P., Kulishenko, O., Chumak, V., Kryvaya, A., & Borovik, I. (2018a). Vpliv dezinfіkuyuchikh zasobіv na kriogennі shtami mіkroorganіzmіv [Influence of disinfectants on cryogenic strains of microorganisms]. The Journal of the Dnipropetrovsk State Agrarian and Economic University, Veterinary Sciences, 47(1–2), 53–58 (in Ukrainian).

Zhmin’ko, P. G., Kokshariova, N. V., & Dmytrenko, M. P. (2006). Dosvid v skriningovyh doslidzhenniyah toksitchnosti likarskih zasobiv [Experience of using different test systems in screening studies on drug toxicity]. Bulletin of Pharmacology and Pharmacy, 4, 21–27 (in Ukrainian).

How to Cite
Zazharskyi, V. V., Davydenko, P., Kulishenko, O., Chumak, V., Kryvaya, A., Biben, I. A., Tishkina, N. M., Borovik, I., Boyko, O. O., & Brygadyrenko, V. V. (2018). Bactericidal, protistocidal and nematodicidal properties of mixtures of alkyldimethylbenzyl ammonium chloride, didecyldimethyl ammonium chloride, glutaraldehyde and formaldehyde. Regulatory Mechanisms in Biosystems, 9(4), 540-545.

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.