Effect of succinic acid on the organism of mice and their intestinal microbiota against the background of excessive fat consumption

Keywords: health effects; biochemical parameters of blood; relative mass of the organ; gut microbiota; microbiome; high-fat diet.


Succinic acid and its salts (succinates) positively affect the oxygenation of the internal environment, stabilize the structure and functional activity of mitochondria, and normalize the ion metabolism in the cell. Separate clinical studies and experimental surveys confirmed that having low toxicity succinic acid has well-manifested antioxidant, immunostimulating, adaptogenic properties. In this study, we determined the influence of succinic acid on the organism of laboratory animals against the backround of high-fat diet: the changes in body weight, indices of the mass of the internal organs, blood parameters and the changes in the intestinal microbiota were determined. For the experiment, we formed three experimental and three control groups of male white mice. The animals of the control group received 0.5% solution of succinic acid instead of water. In the experiment, we determined that succinic acid has no effect on the intensity of growth of weight of young mice against the background of excessive fat in their diet. Excessive consumption of fat by male mice leads to mainly disorders in the functioning of the liver, excretory and the immune systems. High-fat diet of mice is accompanied by impaired hepatic function, manifested in sharp hypoproteinemia due to globulins, increase in the activity of hepatic enzymes against the background of reduced activity of alkaline phosphatase, increase in the level of bilirubin, and decrease in glucose. Excess of fat in the diet leads to malfunctioning of the excretory system, manifested in the reduced index of kidneys’ weight, high content of creatinine and reduced level of urea in the blood. Addition of succinic acid has a positive effect on the functional condition of the liver and the kidneys, especially noticeable during long-term intake. High-fat diet causes disorders in the functioning of the organs of blood circulation and immune protection, accompanied by decrease in the relative mass of the thymus and spleen, low content of hemoglobin and the number of erythrocytes, but has no significant effect on the content of other cellular elements in the blood. By the middle of the experiment, succinic acid had exacerbated these processes compared to the control, but by the end of the experiment, by contrast, these processes were alleviated. Addition of the succinic acid to high-fat diet contributed to the change in the quantitative composition of the main representatives of the obligatory microbiota (Bifidobacterium spp., Lactobacillus spp. and typical Escherichia coli) in the laboratory animals. Such changes in the intestinal microbiota may lead to such consequences as reproduction of the facultative microflora, and, thus, development of various diseases.


Abrashova, T. V., Gushhin, J. A., Kovaleva, M. A., Rybakova, A. V., Selezneva, A. I., Sokolova, A. P., & Hod’ko, S. V. (2013). Fiziologicheskie, biohimicheskie i biometricheskie pokazateli normy jeksperimental’nyh zhivotnyh [Physiological, biochemical and biometric indicators of the norm of experimental animals]. Lema, Saint Petersburg (in Russian).

Anhê, F. F., Roy, D., Pilon, G., Dudonné, S., Matamoros, S., Varin, T. V., Garofalo, C., Moine, Q., Desjardins, Y., Levy, E., & Marette, A. (2014). A polyphenol-rich cranberry extract protects from diet-induced obesity, insulin resistance and intestinal inflammation in association with increased Akkermansia spp. population in the gut microbiota of mice. Gut, 64(6), 872–883.

Armougom, F., Henry, M., Vialettes, B., Raccah, D., & Raoult, D. (2009). Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and methanogens in anorexic patients. PLoS One, 4(9), e7125.

Backhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., Semenkovich, C. F., & Gordon, J. I. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences, 101(44), 15718–15723.

Bäckhed, F., Manchester, J. K., Semenkovich, C. F., & Gordon, J. I. (2007). Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proceedings of the National Academy of Sciences, 104(3), 979–984.

Bilan, M. V., Lieshchova, M. A., Tishkina, N. M., & Brygadyrenko, V. V. (2019). Combined effect of glyphosate, saccharin and sodium benzoate on the gut microbiota of rats. Regulatory Mechanisms in Biosystems, 10(2), 228–232.

Bouchard, C. (2000). Inhibition of food intake by inhibitors of fatty acid synthase. New England Journal of Medicine, 343(25), 1888–1889.

Boyko, A. A., & Brygadyrenko, V. V. (2017). Changes in the viability of the eggs of Ascaris suum under the influence of flavourings and source materials approved for use in and on foods. Biosystems Diversity, 25(2), 162–166.

Boyko, O. O., & Brygadyrenko, V. V. (2019a). The impact of acids approved for use in foods on the vitality of Haemonchus contortus and Strongyloides papillosus (Nematoda) larvae. Helminthologia, 56(3), 202–210.

Boyko, O. O., & Brygadyrenko, V. V. (2019b). The viability of Haemonchus contortus (Nematoda, Strongylida) and Strongyloides papillosus (Nematoda, Rhabditida) larvae exposed to various flavourings and source materials used in food production. Vestnik Zoologii, 53(6), 433–442.

Broz, J., Seon, A., & Simoes-Nunes, C. (2008). Use of succinic acid. International Patent Classification A23K 1/16 (2006.01). International Application Number PCT/EP2009/2009/055901. Intrnational Publication Number 2010/031602 A1.

Brygadyrenko, V. V., Lieshchova, M. A., Bilan, M. V., Tishkina, N. M., & Horchanok, A. V. (2019). Effect of alcohol tincture of Aralia elata on the organism of rats and their gut microbiota against the background of excessive fat diet. Regulatory Mechanisms in Biosystems, 10(4), 497–506.

Cancelas, J., Villanueva-Penacarrillo, M., Valverde, I., & Malaisse, W. (2001). Synergistic insulinotropic effects of succinic acid dimethyl ester and exendin-4 in anaesthetized rats. International Journal of Molecular Medicine, 8(3), 269–271.

Cani, P. D. (2013). Gut microbiota and obesity: Lessons from the microbiome. Briefings in Functional Genomics, 12(4), 381–387.

Cani, P. D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A. M., Delzenne, N. M., & Burcelin, R. (2008). Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes, 57(6), 1470–1481.

Cani, P. D., Neyrinck, A. M., Fava, F., Knauf, C., Burcelin, R. G., Tuohy, K. M., Gibson, G. R., & Delzenne, N. M. (2007). Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 50(11), 2374–2383.

Carvalho, B. M., & Abdalla Saad, M. J. (2013). Influence of gut microbiota on subclinical inflammation and insulin resistance. Mediators of Inflammation, 2013, 986734.

Chen, G., Xie, M., Dai, Z., Wan, P., Ye, H., Zeng, X., & Sun, Y. (2018). Kudingcha and fuzhuan brick tea prevent obesity and modulate gut microbiota in high-fat diet fed mice. Molecular Nutrition and Food Research, 62(6), 1700485.

Chistiakov, D. A., Bobryshev, Y. V., Kozarov, E., Sobenin, I. A., & Orekhov, A. N. (2015). Role of gut microbiota in the modulation of atherosclerosis-associated immune response. Frontiers in Microbiology, 6, 671.

Cox, L. M., & Blaser, M. J. (2013). Pathways in microbe-induced obesity. Cell Metabolism, 17(6), 883–894.

De La Serre, C. B., Ellis, C. L., Lee, J., Hartman, A. L., Rutledge, J. C., & Raybould, H. E. (2010). Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. American Journal of Physiology – Gastrointestinal and Liver Physiology, 299(2), G440–G448.

Dethlefsen, L., Eckburg, P. B., Bik, E. M., & Relman, D. A. (2006). Assembly of the human intestinal microbiota. Trends in Ecology and Evolution, 21(9), 517–523.

Dethlefsen, L., McFall-Ngai, M., & Relman, D. A. (2007). An ecological and evolutionary perspective on human-microbe mutualism and disease. Nature, 449(7164), 811–818.

Ding, S., Chi, M. M., Scull, B. P., Rigby, R., Schwerbrock, N. M. J., Magness, S., Jobin, C., & Lund, P. K. (2010). High-fat diet: Bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One, 5(8), e12191.

Evglevskij, A. A., Evglevskaja, E. P., Mihaleva, T. I., & Mihajlova, O. N. (2013). Immunometabolicheskaja aktivnost’ preparata na osnove jantarnoj kisloty i levamizola [Biological role and metabolic activity of succinic acid]. Vestnik Kurskoj Gosudarstvennoj Selskohozjajstvennoj Akademii, 1, 64–65 (in Russian).

Ferreira, F., Ladrière, L., Vincent, J.-L., & Malaisse, W. (2000). Prolongation of survival time by infusion of succinic acid dimethyl ester in a caecal ligation and perforation model of sepsis. Hormone and Metabolic Research, 32(8), 335–336.

Ferreira, R. B. R., Gill, N., Willing, B. P., Antunes, L. C. M., Russell, S. L., Croxen, M. A., & Finlay, B. B. (2011). The intestinal microbiota plays a role in Salmonella-induced colitis independent of pathogen colonization. PLoS One, 6(5), e20338.

Filatova, G. F., Kuznecova, G. A., & Bobkov, J. G. (1986). Soderzhanie kateholaminov v organah krys pri ohlazhdenii na fone proizvodnyh jantarnoj kisloty [Content of catecholamines in the organ of rats during cooling against the background of derivatives of succinic acid]. Bjulleten Eksperimentalnoj Biologii i Mediciny, 102(9), 15–16 (in Russian).

Foster, J. A., & McVey Neufeld, K.-A. (2013). Gut-brain axis: How the microbiome influences anxiety and depression. Trends in Neurosciences, 36(5), 305–312.

Garnyk, T. P., Frolov, V. M., Tereshin, V. O., Kruglova, O. V. Garnyk, K. V., & Petrischeva, V. O. (2012). Efektyvnist’ preparatu burshtynovoi kysloty v likuvanni khvorykh na nealkoholnyi steatohepatyt, spoluchenyi z syndromom podraznenoho kyshechnyku [Efficiency of succinic acid preparation in treatment of patients with nonalcoholic steatohepatitis combined with irritable bowel syndrome]. Fitoterapiia, 4, 10–16 (in Russian).

Gong, S., Qin, Y., Liao, Z., Shi, H., Teng, C., Xie, J., & Zhang, J. (2020). The influence of liupao tea theabrownins on the profile of gut microbiota in mice. Hans Journal of Food and Nutrition Science, 9(1), 101–107.

Graf, D., Di Cagno, R., Fåk, F., Flint, H. J., Nyman, M., Saarela, M., & Watzl, B. (2015). Contribution of diet to the composition of the human gut microbiota. Microbial Ecology in Health and Disease, 26, 26164.

Harakeh, S. M., Khan, I., Kumosani, T., Barbour, E., Almasaudi, S. B., Bahijri, S. M., Alfadul, S. M., Ajabnoor, G. M. A., & Azhar, E. I. (2016). Gut microbiota: A contributing factor to obesity. Frontiers in Cellular and Infection Microbiology, 6, 95.

Hozhenko, A. I., Vladymyrova, M. P., & Kuzmenko, I. A. (2006). Vplyv burshtynovoji kysloty i preduktalu na osmorehuliuval’nu funktsiju nyrok u bilykh shchuriv pry hentamitsynovij nefropatiji [Influence of succinic acid and Preductal on osmoregulation function of kidneys of white rats during gentamicin nephropathy]. Odeskyi Medychnyi Zhurnal, 4, 8–11 (in Ukrainian).

Ilnitskyi, M. H., & Hierdieva, A. O. (2014). Perspektyvy zastosuvannia yantarnoji kysloty u veterynarnij khirurhiji [Prospects of using succinic acid in veterinary surgery]. Naukovyi Visnyk Veterynarnoi Medytsyny, 114, 13–17 (in Ukrainian).

Ischeikin, K. Y., Pyabushko, M. M., Kitura, O. Y., & Bilash, S. M. (2012). Influence of succinic acid on the state of prooxidant and antioxidant systems at patients with unalcoholic steatohepatitis. World of Medicine and Biology, 35, 134–136.

Ivanov, D. V., Krapivina, E. V., Fedorov, J. N., & Abdulov, A. I. (2009). Immunoreaktivnost’ u telochek pri vakcinacii protiv leptospiroza na fone podkozhnogo vvedenija sukcinata hitozana [Immunoreactivity of female calves during vaccination against leptospirosis on the background of subcutaneous injection of chitosan succinate]. Selskohozjajstvennaja Biologija, Serija Biologija Zhivotnyh, 2, 104–110 (in Russian).

Ivnickij, J. J., & Shturm, R. (1990). Zashhita myshej ot rentgenovskogo izluchenija sukcinatom natrija [X-ray protection for mice radiation of sodium succinate]. Radiobiologija, 80(5), 7–16 (in Russian).

Jia, Z., Liu, M., Qu, Z., Zhang, Y., Yin, S., & Shan, A. (2014). Toxic effects of zearalenone on oxidative stress, inflammatory cytokines, biochemical and pathological changes induced by this toxin in the kidney of pregnant rats. Environmental Toxicology and Pharmacology, 37(2), 580–591.

Karachevceva, E. V. (2013). Vlijanie jantarnoj kisloty na antgel’mintnuju i immunomodulirujushhuju aktivnost’ levamizola [The effect of succinic acid on the anthelmintic and immunomodulating activity of levamisole]. Kursk (in Russian).

Karlsson, F. H., Tremaroli, V., Nookaew, I., Bergström, G., Behre, C. J., Fagerberg, B., Nielsen, J., & Bäckhed, F. (2013). Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature, 498(7452), 99–103.

Kemperman, R. A., Gross, G., Mondot, S., Possemiers, S., Marzorati, M., Van de Wiele, T., Doré, J., & Vaughan, E. E. (2013). Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Research International, 53(2), 659–669.

Kim, H.-J., Kim, S., Lee, A. Y., Jang, Y., Davaadamdin, O., Hong, S.-H., Kim, J. S., & Cho, M.-H. (2017). The effects of Gymnema sylvestre in high-fat diet-induced metabolic disorders. The American Journal of Chinese Medicine, 45(4), 813–832.

Kitura, O. E. (2013). Application of succinic acid in therapy for chronic pancreatitis. Aktualni Problemy Suchasnoi Medytsyny: Visnyk Ukrainskoi Medychnoi Stomatolohichnoi Akademii, 13(2), 112–114 (in Ukrainian).

Kokorina, A., Okulova, I., & Bespyatykh, O. (2014). Influence of succinic acid in liver histology of red fox. Agrarnaja Nauka Evro-Severo-Vostoka, 39, 39–42 (in Russian).

Koliada, A., Syzenko, G., Moseiko, V., Budovska, L., Puchkov, K., Perederiy, V., Gavalko Y., Dorofeyev, A., Romanenko, M., Tkach, S., Sineok, L., Lushchak, O., & Vaiserman, A. (2017). Association between body mass index and Firmicutes/Bacteroidetes ratio in an adult Ukrainian population. BMC Microbiology, 17, 120.

Kostina, D. A., Pokrovskaia, T. G., Martynova, O. V., Dovgan, A. P., & Litvinova, A. S. (2015). Role of metabolic endotoxemia in the development of cardiovascular and metabolic diseases. Research Result. Medicine and Pharmacy Series, 1(3), 164–171.

Kravchuk, E. N., Neimark, A. E., Grineva, E. N., & Galagudza, M. M. (2016). The role of gut microbiota in metabolic regulation. Diabetes Mellitus, 19(4), 280–285.

Ladriere, L., & Malaisse, W. J. (2000a). Effects of succinate dimethyl ester on the metabolic and hormonal response to exercise in fed and starved rats. International Journal of Molecular Medicine, 5(6), 643–652.

Ladriere, L., & Malaisse, W. J. (2000b). Effects of the dimethyl ester on succinic acid on the hormonal and metabolic response to exercise in hereditarily diabetic starved rats. Cell Biochemistry and Function, 18(3), 153–160.

Ladrière, L., Malaisse-Lagae, F., Verbruggen, I., Willem, R., & Malaisse, W. J. (1999). Effects of starvation and diabetes on the metabolism of [2,3-13C] succinic acid dimethyl ester in rat hepatocytes. Metabolism, 48(1), 102–106.

Ladriere, L., Zhang, T.-M., & Malaisse, W. J. (1996). Effects of succinic acid dimethyl ester infusion on metabolic, hormonal, and enzymatic variables in starved rats. Journal of Parenteral and Enteral Nutrition, 20(4), 251–256.

Lashin, A. P., & Simonova, N. V. (2017). Fitopreparaty v korrektsii okislitel’nogo stressa u telyat [Phytopreparations in correction of oxidative stress in calves]. Dalnevostochnyi Agrarnyi Vestnik, 44(4), 131–135 (in Russian).

Lashin, A. P., Simonova, N. V., Gavrilova, G. A., Sayapina, I. Y., & Chubin, A. N. (2018). Effektivnost’ adaptogenov v korrektsii mmunobiokhimicheskogo statusa novorozhdennykh telyat [Efficiency of adaptogens in correction of immunobiochemical status of newly born calves]. Dalnevostochnyi Agrarnyi Vestnik, 46(2), 71–77 (in Russian).

Lebedev, A. F., Shvec, O. M., Evglevskij, A. A., Evglevskaja, E. P., Epifanov, A. V., & Popov, V. S. (2009). Razrabotka i primenenie preparatov na osnove jantarnoj kisloty [Development and usage of medicines based on succinic acid]. Veterinarija, 3, 48–51 (in Russian).

Ley, R. E., Backhed, F., Turnbaugh, P., Lozupone, C. A., Knight, R. D., & Gordon, J. I. (2005). Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences, 102(31), 11070–11075.

Ley, R. E., Turnbaugh, P. J., Klein, S., & Gordon, J. I. (2006). Human gut microbes associated with obesity. Nature, 444(7122), 1022–1023.

Lieshchova, M. A., Brygadyrenko, V. V., Tishkina, N. M., Gavrilin, P. M., & Bohomaz, A. A. (2019). Impact of polyvinyl chloride, polystyrene, and polyethylene on the organism of mice. Regulatory Mechanisms in Biosystems, 10(1), 50–55.

Lieshchova, M. A., Tishkina, N. M., Bohomaz, A. A., Gavrilin, P. M., & Brygadyrenko, V. V. (2018). Combined effect of glyphosphate, saccharin and sodium benzoate on rats. Regulatory Mechanisms in Biosystems, 9(4), 591–597.

Liu, J., Hao, W., He, Z., Kwek, E., Zhao, Y., Zhu, H., Liang, N., Ma, K. Y., Lei, L., Hea, W.-S., & Chen, Z.-Y. (2019). Beneficial effects of tea water extracts on the body weight and gut microbiota in C57BL/6J mice fed with a high-fat diet. Food and Function, 10(5), 2847–2860.

Makarova, M. N., Kryshen’, K. L., Aljakrinskaja, A. A., Rybakova, A. V., & Makarov, V. G. (2016). Harakteristika mikroflory kishechnika u cheloveka i laboratornyh zhivotnyh [Characteristics of intestinal microflora of humans and laboratory animals]. Mezhdunarodnyj Vestnik Veterinarii, 4, 86–94.

Malaisse, W. J., & Sener, A. (1993). Metabolic effects and fate of succinate esters in pancreatic islets. American Journal of Physiology – Endocrinology and Metabolism, 264(3), e434–e440.

Malaisse, W. J., Nadi, A. B., Ladriere, L., & Zhang, T.-M. (1997). Protective effects of succinic aciddimethyl ester infusion in experimental endotoxemia. Nutrition, 13(4), 330–341.

Malaisse, W. J., Rasschaert, J., Villanueva-Penacarrillo, M. L., & Valverde, I. (1993). Respiratory, ionic, and functional effects of succinate esters in pancreatic islets. American Journal of Physiology – Endocrinology and Metabolism, 264(3), e428–e433.

Maslowski, K. M., & Mackay, C. R. (2010). Diet, gut microbiota and immune responses. Nature Immunology, 12(1), 5–9.

Murphy, E. A., Velazquez, K. T., & Herbert, K. M. (2015). Influence of high-fat diet on gut microbiota. Current Opinion in Clinical Nutrition and Metabolic Care, 18(5), 515–520.

Musso, G., Gambino, R., & Cassader, M. (2010). Obesity, dsiabetes, and gut microbiota: The hygiene hypothesis expanded? Diabetes Care, 33(10), 2277–2284.

Nazarenko, G. I., & Kishkun, A. A. (2000). Klinicheskaja ocenka rezul’tatov laboratornyh issledovanij [Clinical assessment of results of laboratory research]. Medicina, Moscow (in Russian).

Neves, A. L., Coelho, J., Couto, L., Leite-Moreira, A., & Roncon-Albuquerque, R. (2013). Metabolic endotoxemia: A molecular link between obesity and cardiovascular risk. Journal of Molecular Endocrinology, 51(2), R51–R64.

Novikov, V. E., & Levchenkova, O. S. (2013). Novye napravlenija poiska lekarstvennyh sredstv s antigipoksicheskoj aktivnostju i misheni ih dejstvija [Promising directions of search for antihypoxants and targets of their action]. Éksperimentalnaya i Klinicheskaya Farmakologiya, 76(5), 37–47 (in Russian).

Ozkan, H., & Yakan, A. (2019). Dietary high calories from sunflower oil, sucrose and fructose sources alters lipogenic genes expression levels in liver and skeletal muscle in rats. Annals of Hepatology, 18(5), 715–724.

Ronai, E., Tretter, L., Szabados, G., & Horvath, I. (1987). The inhibitory effect of succinate on radiation-enhanced mitochondrial lipid peroxidation. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 51(4), 611–617.

Round, J. L., & Mazmanian, S. K. (2009). The gut microbiota shapes intestinal immune responses during health and disease. Nature Reviews Immunology, 9(5), 313–323.

Ryabushko, M. M. (2013). Efektyvnist’ preparatu jantarnoi’ kysloty u hvoryh na hronichnyj nekal’kul’oznyj holecystyt u vikovomu aspekti [Efficacy of succinic acid in patients with chronic cholecystitis in age aspect]. Visnyk Problem Biolohii i Medytsyny, 102(1), 188–191 (in Ukrainian).

Ryzhkova, G. F., Aleksandrova, E. V., Evglevskij, A. A., & Evglevskaja, E. P. (2011). Vlijanie biostimuljatorov na osnove jantarnoj kisloty na morfologicheskie i biohimicheskie pokazateli krovi cypljat-brojlerov [Influence of biostimulators based on succinic acid on morphological and biochemical identicators of blood of broiler chickens]. Vestnik Kurskoj Gosudarstvennoj Selskohozjajstvennoj Akademii, 5, 71–74 (in Russian).

Sakamoto, M., Takeshige, K., Yasui, H., & Tokunaga, K. (1998). Cardioprotective effect of succinate against ischemia/reperfusion injury. Surgery Today, 28(5), 522–528.

Santacruz, A., Collado, M. C., García-Valdés, L., Segura, M. T., Martín-Lagos, J. A., Anjos, T., Martí-Romero, M., Lopez, R. M., Florido, J., Campoy, C., & Sanz, Y. (2010). Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. British Journal of Nutrition, 104(1), 83–92.

Seo, D.-B., Jeong, H. W., Cho, D., Lee, B. J., Lee, J. H., Choi, J. Y., Bae, I.-H., & Lee, S.-J. (2015). Fermented green tea extract alleviates obesity and related complications and alters gut microbiota composition in diet-induced obese mice. Journal of Medicinal Food, 18(5), 549–556.

Shakhmardanova, S. A., Gulevskya, O. N., Khananashvili, Y. A., Zelenskaya, A. V., Nefedov, D. A., & Galenko-Yaroshevsky, P. A. (2016). Preparaty jantarnoj i fumarovoj kislot kak sredstva profilaktiki i terapii razlichnyh zabolevanij [Succinic and fumaric acid drugs for prevention and treatment of various diseases]. Zhurnal Fundamentalnoj Mediciny i Biologii, 3, 16–30 (in Russian).

Shvets, O. M. (2011). The use of the new preparation “Amber bio-stimulator” to rising efficacy of vaccination against virus diseases of horned cattle. Veterinary Agriculture Animals, 6, 13–15.

Simonova, N., Dorovskikh, V., Kropotov, A., Kotel’nikova, M., Shtarberg, M., Maysak, A., Chernysheva, A., & Kabar, M. (2018). Comparative effectiveness of succinic acid and reamberin in the oxidative stress in experiment. Bulletin Physiology and Pathology of Respiration, 70(1), 78–82.

Sun, L., Ma, L., Ma, Y., Zhang, F., Zhao, C., & Nie, Y. (2018). Insights into the role of gut microbiota in obesity: Pathogenesis, mechanisms, and therapeutic perspectives. Protein Cell, 9(5), 397–403.

Tihomirova, O. V. (2005). Terapevticheskaja jeffektivnost’ preparata Reamberin u detej, bol’nyh ostrymi kishechnymi infekcijami, s vyrazhennymi simptomami intoksikacii. Reamberin 1.5% rastvor dlja infuzij – primenenie v pediatricheskoj praktike [Тherapeutic effectiveness of the medicine Reamberin in children who are ill with acute intestinal infections with expressed symptoms of intoxication. Remberin 1.5% solution for infusions – use in paediatric practice]. NTFF Polisan, Sankt-Peterburg (in Russian).

Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444, 1027–1031.

Vahitov, H. M., Simonova, N. N., Generalova, E. V., Vahitova, L. F., Ibragimova, Z. R., & Olenev, N. V. (2014). Obmennye narushenija pri patologii organov dyhanija u detej i puti ih korrekcii s pomoshhju solej jantarnoj kisloty [Metabolic disorders in pathology of respiratory organs of children and ways of correction using salts of succinic acid]. Vesnik Kazanskogo Tehnologicheskogo Universiteta, 17(2), 236–238 (in Russian).

Westergaard, N., Sonnewald, U., & Schousboe, A. (1994). Release of α-ketoglutarate, malate and succinate from cultured astrocytes: Possible role in amino acid neurotransmitter homeostasis. Neuroscience Letters, 176(1), 105–109.

Yu, J., Wang, Y., Qian, H., Zhao, Y., Liu, B., & Fu, C. (2012). Polyprenols from Taxus chinensis var. mairei prevent the development of CCl4-induced liver fibrosis in rats. Journal of Ethnopharmacology, 142(1), 151–160.

Zadnipryany, I. V., Sataieva, T. P., Tretiakova, O. S., & Zukow, W. (2019). Myocardial interstitial matrix as novel target for succinic acid treatment strategies during experimental hypobaric hypoxia. Russian Open Medical Journal, 8(2), e0201.

Zhang, H., DiBaise, J. K., Zuccolo, A., Kudrna, D., Braidotti, M., Yu, Y., Parameswaran, P., Crowell, M. D., Wing, R., Rittmann, B. E., & Krajmalnik-Brown, R. (2009). Human gut microbiota in obesity and after gastric bypass. Proceedings of the National Academy of Sciences, 106(7), 2365–2370.

Zolotykh, М. А. (2008). Obosnovanie primenenija jantarnoj kisloty dlja infuzionnoi terapii u bol’nyh ostrym pielonefritom s cel’ju korrekcii pochechnoj ishemii [Application of succinic acid in the complex infusion therapy of patients with acute pyelonephritis m correction of renal ischemia]. Uralskaja Gosudarstvennaja Medicinskaja Akademija Dopolnitelnogo Obrazovanija, Cheljabinsk (in Russian).

How to Cite
Lieshchova, M. A., Bilan, M. V., Bohomaz, A. A., Tishkina, N. M., & Brygadyrenko, V. V. (2020). Effect of succinic acid on the organism of mice and their intestinal microbiota against the background of excessive fat consumption . Regulatory Mechanisms in Biosystems, 11(2), 153-161. https://doi.org/10.15421/022023

Most read articles by the same author(s)

> >>