Effect of Phage SAvB14 combined with antibiotics on Staphylococcus aureus variant bovis

  • Y. V. Horiuk State Agrarian and Engineering University in Podilya
  • M. D. Kukhtyn Ternopil Ivan Puluj National Technical University
  • V. V. Horiuk State Agrarian and Engineering University in Podilya
  • V. A. Sytnik National University of Life and Environmental Sciences of Ukraine
  • O. O. Dashkovskyy Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies
Keywords: biofilms; bacteriophages; antibiotics; Stapholococcus spp.; phage-antibiotic synergy; mastitis; phage therapy.

Abstract

Because using antimicrobial drugs leads to development of resistance among bacterial isolates, the treatment with antimicrobial drugs in human and veterinary medicine in general should be reduced. Currently, therapeutic use of bacteriophages may be an alternative or addition to the treatment of bacterial infections of animals. The article presents the results of studying the effect of bacteriophage Phage SAvB14 on microbial biofilms of Staphylococcus aureus variant bovis both alone and in complex with antibiotics. For this purpose, we used strain S. aureus var. bovis 1491 f and bacteriophage Phage SAvB14, isolated at dairy farms. The effect of combined application of phage and antibiotics (gentamicin, tetracycline, сeftriaxone and enrofloxacin) were assessed after simultaneous and subsequent introduction of Phage SAvB14 in the dose of 105 plaque-forming units per milliliter (PFU/mL) and corresponding concentrations of antibiotics to 24h biofilms. We determined that of the tested antibiotics, only gentamicin and ceftriazone exerted synergic effects in combinations with Phage SAvB14. Combination treatment using gentamicin and the phage decreased the amount of S. aureus in biofilm by 39.81 times compared with the phage-only treatment. Significant synergic effect was also taken by ceftriaxone – it killed 1.26 times more bacteria in combination with the phage than alone. Other antibiotics did not increase antibiotic activity of the phage. Specifically, 1.11 and 1.26 times more vital cells remained after the actions of tetracycline and enrofloxacin than after the exposure to the bacteriophage only. Therefore, the obtained results indicate that biofilm of S. aureus var. bovis may be eliminated using Phage SAvB14 as an individual antibacterial agent, as well as in complex with antibiotics. However, complex treatment would imply introducing the phage and then antibiotic some time later.

References

Abedon, S. T. (2020). Phage-phage, phage-bacteria, and phage-environment communication. In: Witzany, G. (Ed.). Biocommunication of phages. Springer Nature Switzerland, Cham.

Akturk, E., Oliveira, H., Santos, S. B., Costa, S., Kuyumcu, S., Melo, L. D., & Azeredo, J. (2019). Synergistic action of phage and antibiotics: Parameters to enhance the killing efficacy against mono and dual-species biofilms. Antibiotics, 8(3), 103.

Berryhill, B. A., Huseby, D. L., McCall, I. C., Hughes, D., & Levin, B. R. (2021). Evaluating the potential efficacy and limitations of a phage for joint antibiotic and phage therapy of Staphylococcus aureus infections. Proceedings of the National Academy of Sciences, 118(10), e2008007118.

Bianchi, R. M., Schwertz, C. I., De Cecco, B. S., Panziera, W., De Lorenzo, C., Heck, L. C., & Driemeier, D. (2019). Pathological and microbiological characterization of mastitis in dairy cows. Tropical Animal Health and Production, 51(7), 2057–2066.

Chaudhry, W. N., Concepcion-Acevedo, J., Park, T., Andleeb, S., Bull, J. J., & Levin, B. R. (2017). Synergy and order effects of antibiotics and phages in killing Pseudomonas aeruginosa biofilms. PLoS One, 12(1), e0168615.

Chhibber, S., Kaur, T., & Kaur, S. (2013). Co-therapy using lytic bacteriophage and linezolid: Effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS One, 8(2), e56022.Coulter, L. B., McLean, R. J., Rohde, R. E., & Aron, G. M. (2014). Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms. Viruses, 6(10), 3778–3786.

Dickey, J., & Perrot, V. (2019). Adjunct phage treatment enhances the effectiveness of low antibiotic concentration against Staphylococcus aureus biofilms in vitro. PLoS One, 14(1), e0209390.

Dingwell, R. T., Leslie, K. E., Duffield, T. F., Schukken, Y. H., DesCoteaux, L., Keefe, G. P., & Bagg, R. (2003). Efficacy of intramammary tilmicosin and risk factors for cure of Staphylococcus aureus infection in the dry period. Journal of Dairy Science, 86, 159–168.

Duse, A., Persson-Waller, K., & Pedersen, K. (2021). Microbial aetiology, antibiotic susceptibility and pathogen-specific risk factors for udder pathogens from clinical mastitis in dairy cows. Animals, 11(7), 2113.

Gondil, V. S., Harjai, K., & Chhibber, S. (2020). Endolysins as emerging alternative therapeutic agents to counter drug-resistant infections. International Journal of Antimicrobial Agents, 55(2), 105844.

Horiuk, Y. V., Havrylianchyk, R. Y., Horiuk, V. V., Kukhtyn, M. D., Stravskyy, Y. S., & Fotina, H. A. (2018). Comparison of the minimum bactericidal concentration of antibiotics on planktonic and biofilm forms of Staphylococcus aureus: Mastitis causative agents. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 9(6), 616–622.

Horiuk, Y., Kukhtyn, M., Horiuk, V., Kernychnyi, S., & Tarasenko, L. (2020). Characteristics of bacteriophages of the Staphylococcus aureus variant bovis. Veterinarni Medicina, 65, 421–426.

Kamal, F., & Dennis, J. J. (2015). Burkholderia cepacia complex phage-antibiotic synergy (PAS): Antibiotics stimulate lytic phage activity. Applied and Environmental Microbiology, 81(3), 1132–1138.

Kasman, L. M., Kasman, A., Westwater, C., Dolan, J., Schmidt, M. G., & Norris, J. S. (2002). Overcoming the phage replication threshold: A mathematical model with implications for phage therapy. Journal of Virology, 76(11), 5557–5564.

Kelly, D., McAuliffe, O., Ross, R. P., & Coffey, A. (2012). Prevention of Staphylococcus aureus biofilm formation and reduction in established biofilm density using a combination of phage K and modified derivatives. Letters in Applied Microbiology, 54(4), 286–291.

Kim, M., Jo, Y., Hwang, Y. J., Hong, H. W., Hong, S. S., Park, K., & Myung, H. (2018). Phage-antibiotic synergy via delayed lysis. Applied and Environmental Microbiology, 84(22), e02085-18.

Kirby, A. E. (2012). Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus. PLoS One, 7(11), e51017.

Kirkeby, C., Zervens, L., Toft, N., Schwarz, D., Farre, M., Hechinger, S., & Halasa, T. (2019). Transmission dynamics of Staphylococcus aureus within two Danish dairy cattle herds. International Journal of Dairy Science, 102(2), 1428–1442.

Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A., & Collins, J. J. (2007). A common mechanism of cellular death induced by bactericidal antibiotics. Cell, 130(5), 797–810.

Kortright, K. E., Chan, B. K., Koff, J. L., & Turner, P. E. (2019). Phage therapy: A renewed approach to combat antibiotic-resistant bacteria. Cell Host and Microbe, 25, 219–232.

Kukhtyn, M., Berhilevych, О., Kravcheniuk, K., Shynkaruk, O., Horiuk, Y., & Semaniuk, N. (2017). Formation of biofilms on dairy equipment and the influence of disinfectants on them. Eastern-European Journal of Enterprise Technologies, 89, 26–33.

Kumaran, D., Taha, M., Yi, Q., Ramirez-Arcos, S., Diallo, J. S., Carli, A., & Abdelbary, H. (2018). Does treatment order matter? Investigating the ability of bacteriophage to augment antibiotic activity against Staphylococcus aureus biofilms. Frontiers in Microbiology, 9, 127.

Linder, M., Paduch, J. H., Grieger, A. S., Mansion-de Vries, E., Knorr, N., Zinke, C., & Krömker, V. (2013). Heilungsraten chronischer subklinischer Staphylococcus aureus – Mastitiden nach antibiotischer Therapie bei laktierenden Milchkühen. Cure rates of chronic subclinical Staphylococcus aureus mastitis in lactating dairy cows after antibiotic therapy. Berliner und Münchener Tierärztliche Wochenschrift, 6, 291–296.

Morrisette, T., Kebriaei, R., Lev, K. L., Morales, S., & Rybak, M. J. (2020). Bacteriophage therapeutics: A primer for clinicians on phage‐antibiotic combinations. Pharmacotherapy, 40(2), 153–168.

Peralta, O. A., Carrasco, C., Vieytes, C., Tamayo, M. J., Muñoz, I., Sepulveda, S., & Torres, C. G. (2020). Safety and efficacy of a mesenchymal stem cell intramammary therapy in dairy cows with experimentally induced Staphylococcus aureus clinical mastitis. Scientific Reports, 10(1), 2843.

Pires, D. P., Melo, L. D., Boas, D. V., Sillankorva, S., & Azeredo, J. (2017). Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Current Opinion in Microbiology, 39, 48–56.

Ryan, E. M., Alkawareek, M. Y., Donnelly, R. F., & Gilmore, B. F. (2012). Synergistic phage-antibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunology and Medical Microbiology, 65(2), 395–398.

Sillankorva, S., & Azeredo J. (2014). Bacteriophage attack as an anti-biofilm strategy. In: Donelli, G. (Ed.). Microbial biofilms. Methods in molecular biology (methods and protocols). Humana Press, New York.

Stepanović, S., Vuković, D., Dakić, I., Savić, B., & Švabić-Vlahović, M. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods, 40(2), 175–179.

Streicher, L. M. (2021). Exploring the future of infectious disease treatment in a post-antibiotic era: A comparative review of alternative therapeutics. Journal of Global Antimicrobial Resistance, 24, 285–295.

Suresh, M. K., Biswas, R., & Biswas, L. (2019). An update on recent developments in the prevention and treatment of Staphylococcus aureus biofilms. International Journal of Medical Microbiology, 309(1), 1–12.

Wang, L., Tkhilaishvili, T., Trampuz, A., & Moreno, M. G. (2020). Evaluation of staphylococcal bacteriophage Sb-1 as an adjunctive agent to antibiotics against rifampin-resistant Staphylococcus aureus biofilms. Frontiers in Microbiology, 11, 602057.

Wills, Q. F., Kerrigan, C., & Soothill, J. S. (2005). Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrobial Agents and Chemotherapy, 49(3), 1220–1221.

Yengkho, R., Gupta, M., Lokesha, E., Handique, B., & Singh, L. K. (2019). Bovine mastitis and its treatment strategies. Journal of Veterinary Science and Technology, 7(3), 11–16.

Zazharskyi, V. V., Davydenko, P. О., Kulishenko, O. М., Borovik, I. V., & Brygadyrenko, V. V. (2019). Antimicrobial activity of 50 plant extracts. Biosystems Diversity, 27(2), 163–169.

Zazharskyi, V. V., Davydenko, P. О., Kulishenko, O. М., Borovik, I. V., Zazharska, N. M., & Brygadyrenko, V. V. (2020). Antibacterial and fungicidal activities of ethanol extracts of 38 species of plants. Biosystems Diversity, 28(3), 281–289.

Zhao, X., Yuan, X., Hu, M., Zhang, Y., Li, L., Zhang, Q., & Liu, Y. (2020). Prevalence and characterization of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus isolated from bulk tank milk in Shandong dairy farms. Food Control, 125, 107836.

Published
2021-09-03
How to Cite
Horiuk, Y. V., Kukhtyn, M. D., Horiuk, V. V., Sytnik, V. A., & Dashkovskyy, O. O. (2021). Effect of Phage SAvB14 combined with antibiotics on Staphylococcus aureus variant bovis . Regulatory Mechanisms in Biosystems, 12(3), 531-536. https://doi.org/10.15421/022173

Most read articles by the same author(s)