Microflora of boxes for holding veterinary patients in clinics

  • M. M. Mocherniuk Podillia State University
  • M. D. Kukhtyn Ternopil Ivan Puluj National Technical University
  • Y. V. Horiuk Podillia State University
  • V. V. Horiuk Podillia State University
  • O. A. Tsvigun Podillia State University
  • T. S. Tokarchuk Podillia State University
Keywords: nosocomial infection; veterinary cinics; microflora composition; biofilm; companion animals


A significant element of the prophylaxis of nosocomial infection in veterinary clinics is monitoring ambient objects, air, equipment, and instruments. In order to determine the role of boxes for keeping ill animals as a source of transmission of pathogens of nosocomial infections in veterinary clinics, we studied the microflora of surfaces of boxes and bioaerosol prior and after sanitation. For this purpose, we collected rinses from the surfaces of plastic and steel boxes, air samples prior to morning sanitation, after cleaning and wiping the surfaces with water and detergents and after disinfection. From the surfaces of the boxes for holding animals, we mostly isolated bacteria of Staphylococcus spp., Streptococcus spp., Micrococcus spp., Corynebacterium spp., Enterococcus spp. and Bacillus spp. Gram-negative species we found were bacteria of Escherichia spp., Acinetobacter spp. and Enterobacter spp. After wet cleaning and disinfection of plastic boxes, we detected species of Staphylococcus spp. and Enterococcus spp. in 5.4% of the samples, Micrococcus spp. in 8.1% and Bacillus spp. in 2.7%. Gram-negative bacteria of Enterobacter spp. were found in 2.7% of the samples. At the same time, the number of microorganisms in samples in which the bacteria were found after disinfection on the surfaces of stainless-steel boxes was 2.0 times lower than in such from the surfaces of plastic boxes. We determined that after wet disinfection of boxes’ surfaces, there occurred decrease in the microbial number in the air, equaling 3.7 times on average, compared with prior to disinfection. The basis of the air microflora after disinfection comprised species of Micrococcus spp., Corynebacterium spp. and Staphylococcus spp., which can be airborne-transmitted. Bacteria that were isolated from the boxes after disinfection (Micrococcus spp., Staphylococcus spp.) formed highly dense biofilms, which probably ensure the survival of the microbial cells, thus making the boxes a probable source of nosocomial infection.


Anderson, M. E., Lefebvre, S. L., & Weese, J. S. (2008). Evaluation of prevalence and risk factors for methicillin-resistant Staphylococcus aureus colonization in veterinary personnel attending an international equine veterinary conference. Veterinary Microbiology, 129(3–4), 410–417.

Baptiste, K. E., Williams, K., Willams, N. J., Wattret, A., Clegg, P. D., Dawson, S., & Hart, C. A. (2005). Methicillin-resistant staphylococci in companion animals. Emerging Infectious Diseases, 11(12), 1942–1944.

Belmonte, O., Pailhories, H., Kempf, M., Gaultier, M. P., Lemarié, C., Ramont, C., & Eveillard, M. (2014). High prevalence of closely-related Acinetobacter baumannii in pets according to a multicentre study in veterinary clinics, Reunion Island. Veterinary Microbiology, 170(3–4), 446–450.

Corrò, M., Skarin, J., Börjesson, S., & Rota, A. (2018). Occurrence and characterization of methicillin-resistant Staphylococcus pseudintermedius in successive parturitions of bitches and their puppies in two kennels in Italy. BMC Veterinary Research, 14(1), 1–8.

D'Agata, E. M., Horn, M. A., Ruan, S., Webb, G. F., & Wares, J. R. (2012). Efficacy of infection control interventions in reducing the spread of multidrug-resistant organisms in the hospital setting. PLoS One, 7(2), e30170.

Dallap Schaer, B. L., Aceto, H., & Rankin, S. C. (2010). Outbreak of salmonellosis caused by Salmonella enterica serovar Newport MDR‐AmpC in a large animal veterinary teaching hospital. Journal of Veterinary Internal Medicine, 24(5), 1138–1146.

Darwich, L., Seminati, C., Burballa, A., Nieto, A., Durán, I., Tarradas, N., & Molina-López, R. A. (2021). Antimicrobial susceptibility of bacterial isolates from urinary tract infections in companion animals in Spain. Veterinary Record, 188(9), 1–12.

De Kraker, M. E., Davey, P. G., Grundmann, H., & Burden Study Group (2011). Mortality and hospital stay associated with resistant Staphylococcus aureus and Escherichia coli bacteremia: Estimating the burden of antibiotic resistance in Europe. PLoS Medicine, 8(10), e1001104.

Elnageh, H. R., Hiblu, M. A., Abbassi, M. S., Abouzeed, Y. M., & Ahmed, M. O. (2020). Prevalence and antimicrobial resistance of Staphylococcus species isolated from cats and dogs. Open Veterinary Journal, 10(4), 452–456.

Ewers, C., Stamm, I., Pfeifer, Y., Wieler, L. H., Kopp, P. A., Schønning, K., & Bethe, A. (2014). Clonal spread of highly successful ST15-CTX-M-15 Klebsiella pneumoniae in companion animals and horses. Journal of Antimicrobial Chemotherapy, 69(10), 2676–2680.

Feßler, A. T., Schuenemann, R., Kadlec, K., Hensel, V., Brombach, J., Murugaiyan, J., & Schwarz, S. (2018). Methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP) among employees and in the environment of a small animal hospital. Veterinary Microbiology, 221, 153–158.

Francey, T., Gaschen, F., Nicolet, J., & Burnens, A. P. (2000). The role of Acinetobacter baumannii as a nosocomial pathogen for dogs and cats in an intensive care unit. Journal of Veterinary Internal Medicine, 14(2), 177–183.

Giannouli, M., Antunes, L., Marchetti, V., Triassi, M., Visca, P., & Zarrilli, R. (2013). Virulence-related traits of epidemic Acinetobacter baumannii strains belonging to the international clonal lineages I-III and to the emerging genotypes ST25 and ST78. BMC Infectious Diseases, 13(1), 1–11.

Gibson, J. S., Morton, J. M., Cobbold, R. N., Filippich, L. J., & Trott, D. J. (2011). Risk factors for dogs becoming rectal carriers of multidrug-resistant Escherichia coli during hospitalization. Epidemiology and Infection, 139(10), 1511–1521.

Goyal, N., Miller, A., Tripathi, M., & Parvizi, J. (2013). Methicillin-resistant Staphylococcus aureus (MRSA) colonisation and pre-operative screening. The Bone and Joint Journal, 95(1), 4–9.

Habibullah, A., Rahman, A. M. M. T., Haydar, M. R., Nazir, K. H. M. N. H., & Rahman, M. T. (2017). Prevalence and molecular detection of methicillin-resistant Staphylococcus aureus from dogs and cats in Dhaka City. Bangladesh Journal of Veterinary Medicine, 15(1), 51–57.

Hamilton, E., Kruger, J. M., Schall, W., Beal, M., Manning, S. D., & Kaneene, J. B. (2013). Acquisition and persistence of antimicrobial-resistant bacteria isolated from dogs and cats admitted to a veterinary teaching hospital. Journal of the American Veterinary Medical Association, 243(7), 990–1000.

Hardy, K. J., Oppenheim, B. A., Gossain, S., Gao, F., & Hawkey, P. M. (2006). A study of the relationship between environmental contamination with methicillin-resistant Staphylococcus aureus (MRSA) and patients’ acquisition of MRSA. Infection Control and Hospital Epidemiology, 27(2), 127–132.

Harper, T. A., Bridgewater, S., Brown, L., Pow-Brown, P., Stewart-Johnson, A., & Adesiyun, A. A. (2013). Bioaerosol sampling for airborne bacteria in a small animal veterinary teaching hospital. Infection Ecology and Epidemiology, 3(1), 20376.

Horiuk, Y., Kukhtyn, M., Kovalenko, V., Kornienko, L., Horiuk, V., & Liniichuk, N. (2019). Biofilm formation in bovine mastitis pathogens and the effect on them of antimicrobial drugs. Independent Journal of Management an Production, 10(7), 897–910.

Hritcu, O. M., Schmidt, V. M., Salem, S. E., Maciuca, I. E., Moraru, R. F., Lipovan, I., & Timofte, D. (2020). Geographical variations in virulence factors and antimicrobial resistance amongst staphylococci isolated from dogs from the United Kingdom and Romania. Frontiers in Veterinary Science, 7, 1–10.

Jordan, D., Simon, J., Fury, S., Moss, S., Giffard, P., Maiwald, M., & Trott, D. J. (2011). Carriage of methicillin‐resistant Staphylococcus aureus by veterinarians in Australia. Australian Veterinary Journal, 89(5), 152–159.

Kempf, M., & Rolain, J. M. (2012). Emergence of resistance to carbapenems in Acinetobacter baumannii in Europe: Clinical impact and therapeutic options. International Journal of Antimicrobial Agents, 39(2), 105–114.

Kisera, Y., Bozhyk, L., Grynevych, N., & Martyniv, Y. (2021). Species composition of circulation microflora and its resistance to antibacterial drugs in the conditions of the impulse veterinary clinic of the city of Lviv. Scientific Journal of Veterinary Medicine, 2, 65–71.

Krapf, M., Müller, E., Reissig, A., Slickers, P., Braun, S. D., Müller, E., & Monecke, S. (2019). Molecular characterisation of methicillin-resistant Staphylococcus pseudintermedius from dogs and the description of their SCCmec elements. Veterinary Microbiology, 233, 196–203.

Kukhtyn, M., Berhilevych, O., Kravcheniuk, K., Shynkaruk, O., Horiuk, Y., & Semaniuk, N. (2017). Formation of biofilms on dairy equipment and the influence of disinfectants on them. Eastern-European Journal of Enterprise Technologies, 89, 26–33.

Lee, D., Goh, T. W., Kang, M. G., Choi, H. J., Yeo, S. Y., Yang, J., & Kim, Y. (2022). Perspectives and advances in probiotics and the gut microbiome in companion animals. Journal of Animal Science and Technology, 64(2), 197–217.

Leonard, F. C., Abbott, Y., Rossney, A., Quinn, P. J., O’Mahony, R., & Markey, B. K. (2006). Methicillin‐resistant Staphylococcus aureus isolated from a veterinary surgeon and five dogs in one practice. Veterinary Record, 158(5), 155–159.

Loeffler, A., Boag, A. K., Sung, J., Lindsay, J. A., Guardabassi, L., Dalsgaard, A., & Lloyd, D. H. (2005). Prevalence of methicillin-resistant Staphylococcus aureus among staff and pets in a small animal referral hospital in the UK. Journal of Antimicrobial Chemotherapy, 56(4), 692–697.

Loncaric, I., Lepuschitz, S., Ruppitsch, W., Trstan, A., Andreadis, T., Bouchlis, N., & Spergser, J. (2019). Increased genetic diversity of methicillin-resistant Staphylococcus aureus (MRSA) isolated from companion animals. Veterinary Microbiology, 235, 118–126.

Ma, G. C., Worthing, K. A., Ward, M. P., & Norris, J. M. (2020). Commensal staphylococci including methicillin-resistant Staphylococcus aureus from dogs and cats in remote New South Wales, Australia. Microbial Ecology, 79(1), 164–174.

Milton, A. A. P., Priya, G. B., Aravind, M., Parthasarathy, S., Saminathan, M., Jeeva, K., & Agarwal, R. K. (2015). Nosocomial infections and their surveillance in veterinary hospitals. Advances in Animal and Veterinary Sciences, 3(2s), 1–24.

Morley, P. S., Apley, M. D., Besser, T. E., Burney, D. P., Fedorka‐Cray, P. J., Papich, M. G., & Weese, J. S. (2005). Antimicrobial drug use in veterinary medicine. Journal of Veterinary Internal Medicine, 19(4), 617–629.

Morrissey, I., Moyaert, H., de Jong, A., El Garch, F., Klein, U., Ludwig, C., & Youala, M. (2016). Antimicrobial susceptibility monitoring of bacterial pathogens isolated from respiratory tract infections in dogs and cats across Europe: ComPath results. Veterinary Microbiology, 191, 44–51.

Mustapha, M., Bukar-Kolo, Y. M., Geidam, Y. A., & Gulani, I. A. (2014). Review on methicillin-resistant Staphylococcus aureus (MRSA) in dogs and cats. International Journal of Animal and Veterinary Advances, 6(2), 61–73.

Nath, T. C., Eom, K. S., Choe, S., Islam, S., Sabuj, S. S., Saha, E., & Lee, D. (2022). Insights to helminth infections in food and companion animals in Bangladesh: Occurrence and risk profiling. Parasite Epidemiology and Control, 17, e00245.

Pitout, J. D. (2010). Infections with extended-spectrum β-lactamase-producing Enterobacteriaceae. Drugs, 70(3), 313–333.

Rusdi, B., Laird, T., Abraham, R., Ash, A., Robertson, I. D., Mukerji, S., & O’Dea, M. A. (2018). Carriage of critically important antimicrobial resistant bacteria and zoonotic parasites amongst camp dogs in remote Western Australian indigenous communities. Scientific Reports, 8(1), 1–8.

Sellera, F. P., Da Silva, L. C., & Lincopan, N. (2021). Rapid spread of critical priority carbapenemase-producing pathogens in companion animals: A one health challenge for a post-pandemic world. Journal of Antimicrobial Chemotherapy, 76(9), 2225–2229.

Shaheen, B. W., Nayak, R., Foley, S. L., Kweon, O., Deck, J., Park, M., & Boothe, D. M. (2011). Molecular characterization of resistance to extended-spectrum cephalosporins in clinical Escherichia coli isolates from companion animals in the United States. Antimicrobial Agents and Chemotherapy, 55(12), 5666–5675.

Shrivastava, S. R., Shrivastava, P. S., & Ramasamy, J. (2013). Airborne infection control in healthcare settings. Infection Ecology and Epidemiology, 3(1), 21411.

Sitkowska, J., Sitkowski, W., Sitkowski, L., Lutnicki, K., Adamek, L., & Wilkolek, P. (2015). Seasonal microbiological quality of air in veterinary practices in Poland. Annals of Agricultural and Environmental Medicine, 22(4), 614–624.

Smith, A., Wayne, A. S., Fellman, C. L., & Rosenbaum, M. H. (2019). Usage patterns of carbapenem antimicrobials in dogs and cats at a veterinary tertiary care hospital. Journal of Veterinary Internal Medicine, 33(4), 1677–1685.

Steneroden, K. K., Van Metre, D. C., Jackson, C., & Morley, P. S. (2010). Detection and control of a nosocomial outbreak caused by Salmonella newport at a large animal hospital. Journal of Veterinary Internal Medicine, 24(3), 606–616.

Stull, J. W., & Weese, J. S. (2015). Hospital-associated infections in small animal practice. Small Animal Practice, 45(2), 217–233.

Taniguchi, Y., Koide, S., Maeyama, Y., Tamai, K., Hayashi, W., Tanaka, H., & Nagano, N. (2020). Predominance of methicillin-resistant Staphylococcus aureus SCCmec type II-CC5 and SCCmec type IV-CC1/CC8 among companion animal clinical isolates in Japan: Findings from phylogenetic comparison with human clinical isolates. Journal of Global Antimicrobial Resistance, 20, 253–259.

van Duijkeren, E., Moleman, M., van Oldruitenborgh-Oosterbaan, M. S., Multem, J., Troelstra, A., Fluit, A. C., & Wagenaar, J. A. (2010). Methicillin-resistant Staphylococcus aureus in horses and horse personnel: An investigation of several outbreaks. Veterinary Microbiology, 141, 96–102.

Van Duijkeren, E., Wolfhagen, M. J., Box, A. T., Heck, M. E., Wannet, W. J., & Fluit, A. C. (2004). Human-to-dog transmission of methicillin-resistant Staphylococcus aureus. Emerging Infectious Diseases, 10(12), 2235–2237.

Vos, P., Garrity, G., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., & Whitman, W. B. (Eds.). (2011). Bergey’s manual of systematic bacteriology. Volume 3. The Firmicutes. Springer Science and Business Media, New York.

Weese, J. S., Caldwell, F., Willey, B. M., Kreiswirth, B. N., McGeer, A., Rousseau, J., & Low, D. E. (2006). An outbreak of methicillin-resistant Staphylococcus aureus skin infections resulting from horse to human transmission in a veterinary hospital. Veterinary Microbiology, 114(1–2), 160–164.

Weese, J. S., Finley, R., Reid-Smith, R. R., Janecko, N., & Rousseau, J. (2010). Evaluation of Clostridium difficile in dogs and the household environment. Epidemiology and Infection, 138(8), 1100–1104.

Zazharskyi, V. V., Davydenko, P. O., Kulishenko, O. M., Borovik, I. V., & Brygadyrenko, V. V. (2019). Antimicrobial activity of 50 plant extracts. Biosystems Diversity, 27(2), 163–169.

Zazharskyi, V. V., Davydenko, P. О., Kulishenko, O. М., Borovik, I. V., Zazharska, N. M., & Brygadyrenko, V. V. (2020). Antibacterial and fungicidal activities of ethanol extracts of 38 species of plants. Biosystems Diversity, 28(3), 281–289.

Zhang, C., Qiu, S., Wang, Y., Qi, L., Hao, R., Liu, X., & Song, H. (2013). Higher isolation of NDM-1 producing Acinetobacter baumannii from the sewage of the hospitals in Beijing. PloS One, 8(6), e64857.

Zordan, S., Prenger-Berninghoff, E., Weiss, R., van der Reijden, T., van den Broek, P., Baljer, G., & Dijkshoorn, L. (2011). Multidrug-resistant Acinetobacter baumannii in veterinary clinics, Germany. Emerging Infectious Diseases, 17(9), 1751–1754.

How to Cite
Mocherniuk, M. M., Kukhtyn, M. D., Horiuk, Y. V., Horiuk, V. V., Tsvigun, O. A., & Tokarchuk, T. S. (2022). Microflora of boxes for holding veterinary patients in clinics . Regulatory Mechanisms in Biosystems, 13(3), 257-264. https://doi.org/10.15421/022233

Most read articles by the same author(s)