Influence of staphylococcal Phage SAvB14 on biofilms, formed by Staphylococcus aureus variant bovis

  • Y. V. Horiuk State Agrarian and Engineering University in Podilya
  • M. D. Kukhtyn I. Y. Horbachevsky Ternopil State Medical University
  • Y. S. Stravskyy I. Y. Horbachevsky Ternopil State Medical University
  • S. I. Klymnyuk I. Y. Horbachevsky Ternopil State Medical University
  • K. M. Vergeles National Pirogov Memorial Medical University
  • V. V. Horiuk State Agrarian and Engineering University in Podilya
Keywords: phage activity; degradation of biofilm; staphylococci; 24- and 72-hour biofilms


The use of bacteriophages for the treatment of chronic inflammatory processes has proved to be relevant, especially during isolation of antibiotic-resistant pathogens formed in biofilms. The article presents the results of research on the influence of Phage SAvB14 on young and mature biofilms formed by Staphylococcus aureus variant bovis. In the experiments we used cultures of S. aureus and a specific Phage SAvB14 isolated from the secretion of the mammary gland of cows suffering from chronic mastitis. In the study of the influence of bacteriophage on formed biofilms we determined the optical density of the dye solution that was washed from the biofilm photometrically on a spectrophotometer PE-5400UV (Ecroskhim, Russia) and the number of staphylococcal cells in the biofilm after the action of the bacteriophage on 24-hour and 72-hour biofilms by a ten-fold dilution on beef-extract agar. It was determined that under the influence of the bacteriophage on young 24-hour biofilms of S. aureus var. bovis, the optical density of the dye solution from biofilm increased within 4 hours up to 10% and the number of microbial cells increased by 1.8 times. After 32 hours of bacteriophage action, the optical density of the dye solution decreased on average by 34% compared to the initial density and the number of S. aureus cells in the biofilm decreased by 30 times. This indicates that microbial cells of young biofilms are not subject to complete lysis during the action of even this specific bacteriophage. Degradation of 77.5% of biofilm under the influence of the bacteriophage was observed on mature 72-hour biofilm within 32 hours at 37 °C. At the same time, viable cells of S. aureus were not isolated from the biofilm. This indicates the high lytic activity of the bacteriophage against mature biofilm bacteria and the possibility of its use in chronic staphylococcal infections caused by S. aureus var. bovis. Thus, the obtained data indicate that when mature 72-hour biofilms are exposed to the researched bacteriophage, their degradation is more intense compared with the young 24-hour biofilms, and the amount of destroyed biofilm was on average 2 times higher. This suggests that the use of specific staphylococcal Phage SAvB14 isolated by us for the destruction of biofilm, formed by S. aureus var. bovis, is promising.


Abedon, S. T. (2009). Kinetics of phage-mediated biocontrol of bacteria. Foodborne Pathogens and Disease, 6(7), 807–815.

Abedon, S. T. (2011). Lysis from without. Bacteriophage, 1(1), 46–49.

Alves, D. R., Gaudion, A., Bean, J. E., Esteban, P. P., Arnot, T. C., Harper, D. R., Jenkins, A. T. A. (2014). Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm formation. Applied and Environmental Microbiology, 80(21), 6694–6703.

Azeredo, J., & Sutherland, I. W. (2008). The use of phages for the removal of infectious biofilms. Current Pharmaceutical Biotechnology, 9(4), 261–266.

Bahamondez-Canas, T. F., Zhang, H., Tewes, F., Leal, J., & Smyth, H. D. (2018). PEGylation of tobramycin improves mucus penetration and antimicrobial activity against Pseudomonas aeruginosa biofilms in vitro. Molecular Pharmaceutics, 15(4), 1643–1652.

Briandet, R., Lacroix-Gueu, P., Renault, M., Lecart, S., Meylheuc, T., Bidnenko, E., & Fontaine-Aupart, M. P. (2008). Fluorescence correlation spectroscopy to study diffusion and reaction of bacteriophages inside biofilms. Applied and Environmental Microbiology, 74(7), 2135–2143.

Cabrera, C. E., Gomez, R. F., Zuñiga, A. E., Corral, R. H., López, B. & Chávez, M. (2011). Epidemiology of nosocomial bacteria resistant to antimicrobials. Colombia Medica, 42(1), 117–125.

Dias, R. S., Eller, M. R., Duarte, V. S., Pereira, A. L., Silva, C. C., Mantovani, H. C., Oliveira, L. L., Silva, E. de A. M., & Paula, S. O. (2013). Use of phages against antibiotic-resistant Staphylococcus aureus isolated from bovine. Journal of Animal Science, 91, 3930–3939.

Donlan, R. M. (2009). Preventing biofilms of clinically relevant organisms using bacteriophage. Trends in Microbiology, 17(2), 66–72.

Felipe, V., Breser, M. L., Bohl, L. P., da Silva, E. R., Morgante, C. A., Correa, S. G., & Porporatto, C. (2019). Chitosan disrupts biofilm formation and promotes biofilm eradication in Staphylococcus species isolated from bovine mastitis. International Journal of Biological Macromolecules, 126, 60–67.

Fischetti, V. A. (2008). Bacteriophage lysins as effective antibacterials. Current Opinion in Microbiology, 11(5), 393–400.

Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623–633.

Gutierrez, D., Vandenheuvel, D., Martínez, B., Rodríguez, A., Lavigne, R., & García, P. (2015). Two phages, phiIPLA-RODI and phiIPLA-C1C, lyse mono- and dual-species staphylococcal biofilms. Applied and Environmental Microbiology, 81(10), 3336–3348.

Horiuk, Y. V. (2018). Fagotherapy of cows mastitis as an alternative to antibiotics in the system of obtaining environmentally safe milk. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies, 20(88), 42–47.

Horiuk, Y. V., Kukhtyn, M. D., Strayskyy, Y. S., Havrylianchyk, R. Y., Horiuk, V. V., & Fotina, H. A. (2018). Comparison of the minimum bactericidal concentration of antibiotics on planktonic and biofilm forms of Staphylococcus aureus: Mastitis causative agents. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 9(6), 616–622.

Horiuk, Y., Kukhtyn, M., Kovalenko, V., Kornienko, L., Horiuk, V., & Liniichuk, N. (2019). Biofilm formation in bovine mastitis pathogens and the effect on them of antimicrobial drugs. Independent Journal of Management and Production, 10(7), 897–910.

Howard-Varona, C., Hargreaves, K. R., Abedon, S. T., & Sullivan, M. B. (2017). Lysogeny in nature: Mechanisms, impact and ecology of temperate phages. The ISME Journal, 11(7), 1511–1520.

Hurlow, J., Couch, K., Laforet, K., Bolton, L., Metcalf, D., & Bowler, P. (2015). Clinical biofilms: A challenging frontier in wound care. Advances in Wound Care, 4(5), 295–301.

Hyman, P., & Abedon, S. T. (2010). Bacteriophage host range and bacterial resistance. Advances in Applied Microbiology, 70, 217–248.

Hymes, S. R., Randis, T. M., Sun, T. Y., & Ratner, A. J. (2013). DNAse inhibits Gardnerella vaginalis biofilms in vitro and in vivo. The Journal of Infectious Diseases, 207(10), 1491–1497.

Iglesias, Y. D., Wilms, T., Vanbever, R., & Van Bambeke, F. (2019). Activity of antibiotics against Staphylococcus aureus in an in vitro model of biofilms in the context of cystic fibrosis: Influence of the culture medium. Antimicrobial Agents and Chemotherapy, 63(7), e00602-19.

Kasman, L. M., Kasman, A., Westwater, C., Dolan, J., Schmidt, M. G., & Norris, J. S. (2002). Overcoming the phage replication threshold: A mathematical model with implications for phage therapy. Journal of Virology, 76(11), 5557–5564.

Kelly, D., McAuliffe, O., Ross, R. P., & Coffey, A. (2012). Prevention of Staphylococcus aureus biofilm formation and reduction in established biofilm density using a combination of phage K and modified derivatives. Letters in Applied Microbiology, 54(4), 286–291.

Kukhtyn, M., Berhilevych, О., Kravcheniuk, K., Shynkaruk, O., Horiuk, Y., & Semaniuk, N. (2017). Formation of biofilms on dairy equipment and the influence of disinfectants on them. Eastern-European Journal of Enterprise Technologies, 89, 26–33.

Latka, A., Maciejewska, B., Majkowska-Skrobek, G., Briers, Y., & Drulis-Kawa, Z. (2017). Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process. Applied Microbiology and Biotechnology, 101(8), 3103–3119.

Lopetuso, L., Giorgio, M., Saviano, A., Scaldaferri, F., Gasbarrini, A., & Cammarota, G. (2019). Bacteriocins and bacteriophages: Therapeutic weapons for gastrointestinal diseases? International Journal of Molecular Sciences, 20(1), 183–195.

Mah, T. F. C., & O'Toole, G. A. (2001). Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology, 9(1), 34–39.

Milho, C., Silva, M. D., Sillankorva, S., & Harper, D. R. (2019). Biofilm applications of bacteriophages. In: Harper, D., Abedon, S., Burrowes, B., McConville, M. (eds.). Bacteriophages. Springer Nature Switzerland AG, Cham.

Morris, J., Kelly, N., Elliott, L., Grant, A., Wilkinson, M., Hazratwala, K., & McEwen, P. (2018). Evaluation of bacteriophage anti-biofilm activity for potential control of orthopedic implant-related infections caused by Staphylococcus aureus. Surgical Infections, 20(1), 16–24.

Parasion, S., Kwiatek, M., Gryko, R., Mizak, L., & Malm, A. (2014). Bacteriophages as an alternative strategy for fighting biofilm development. Polish Journal of Microbiology, 63(2), 137–145.

Siala, W., Rodriguez-Villalobos, H., Fernandes, P., Tulkens, P. M., & Van Bambeke, F. (2018). Activities of combinations of antistaphylococcal antibiotics with fusidic acid against staphylococcal biofilms in in vitro static and dynamic models. Antimicrobial Agents and Chemotherapy, 62(7), e00598-18.

Stepanović, S., Vuković, D., Dakić, I., Savić, B., & Švabić-Vlahović, M. (2000). A modified microtiter-plate test for quantification of staphylococcal biofilm formation. Journal of Microbiological Methods, 40(2), 175–179.

Stewart, P. S., & Franklin, M. J. (2008). Physiological heterogeneity in biofilms. Nature Reviews Microbiology, 6(3), 199.

Svircev, A., Roach, D., & Castle, A. (2018). Framing the future with bacteriophages in agriculture. Viruses, 10(5), 218.

Tkhilaishvili, T., Lombardi, L., Klatt, A. B., Trampuz, A., & Di Luca, M. (2018). Bacteriophage Sb-1 enhances antibiotic activity against biofilm, degrades exopolysaccharide matrix and targets persisters of Staphylococcus aureus. International Journal of Antimicrobial Agents, 52(6), 842–853.

Vandersteegen, K., Kropinski, A. M., Nash, J. H., Noben, J. P., Hermans, K., & Lavigne, R. (2013). Romulus and Remus, two phage isolates representing a distinct clade within the Twortlikevirus genus, display suitable properties for phage therapy applications. Journal of Virology, 87(6), 3237–3247.

Vorobey, E. S., Voronkova, O. S., & Vinnikov, A. I. (2017). Correction of vaginal dysbiosis in mice caused by a film-forming strain Staphylococcus aureus, using bacteriophages and probiotics. Regulatory Mechanisms in Biosystems, 8(2), 252–258.

Weinbauer, M. G. (2004). Ecology of prokaryotic viruses. FEMS Microbiology Reviews, 28(2), 127–181.

Wills, Q. F., Kerrigan, C., & Soothill, J. S. (2005). Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrobial Agents and Chemotherapy. 49(3), 1220–1221.

Zimmerli, W., & Sendi, P. (2019). Role of rifampin against staphylococcal biofilm infections in vitro, in animal models, and in orthopedic-device-related infections. Antimicrobial Agents and Chemotherapy, 63(2), e01746-18.

How to Cite
Horiuk, Y. V., Kukhtyn, M. D., Stravskyy, Y. S., Klymnyuk, S. I., Vergeles, K. M., & Horiuk, V. V. (2019). Influence of staphylococcal Phage SAvB14 on biofilms, formed by Staphylococcus aureus variant bovis . Regulatory Mechanisms in Biosystems, 10(3), 314-318.