Mathematical model of transmembrane potential dynamics of loach early embryogenesis

  • G. V. Galyk Danylo Halytsky Lviv National Medical University
  • Z. Y. Fedorovych Danylo Halytsky Lviv National Medical University
  • E. I. Lychkovsky Danylo Halytsky Lviv National Medical University
  • Z. D. Vorobets Danylo Halytsky Lviv National Medical University
Keywords: heavy metals; nickel; cobalt; tin; zinc; biopotential; loach; embryonic development; modeling; cross-correlation


Heavy metals in the water environment are known to have a negative effect on the viability of fish in early development. We have discussed the influence of environmental factors on early embryo development from the viewpoint of the correlation adaptometry method. The analysis of time series with the subsequent construction of a mathematical model was used to determine the change in the greatest effect of certain types of ions on the values of the transmembrane potential for prognostic purposes. The membrane potential is accepted as an integral indicator of the state of the embryos. Structures of five elements of the same type were constructed for the time shifts from 0 to 180 minutes. Each element in the system characterizes the value of the transmembrane potential that was measured in a cell incubated in one of the five solutions during early embryo development. Mathematical models describing the cell membrane potential dynamics have been created and studied. It was noted that the transmembrane potential dynamics of embryo cells is dependent on a change in the value of the correlation coefficient between elements of the system. A decrease in the sum of the correlations between individual elements of the system with an increase in the magnitude of the time shift is established. The results of the numerical solutions of the system equations indicated the sequence of changes in the greatest effect of the incubation medium on the value of the membrane potential in cells. The study of the membrane potentials’ dynamics, using the total values of the strength of correlation, confirmed the influence of heavy metals in the incubation medium on the membrane potential of embryo cell in early development.


Abdul Kadir, L., Stacey, M., & Barrett-Jolley, R. (2018). Emerging roles of the membrane potential: Action beyond the action potential. Frontiers in Physiology, 9, 1661.

Aldavood, S. J., Abbott, L. C., Evans, Z. R., Griffin, D. J., Lee, M. D., Quintero-Arevalo, N. M., & Villalobos, A. R. (2020). Effect of cadmium and nickel exposure on early development in zebrafish (Danio rerio) embryos. Water, 12(11), 3005.

Anderson, J. A. (2001). Discrete mathematics with combinatorics. Prentice Hall, New Jersey.

Bhagat, J., Zang, L., Nishimura, N., & Shimada, Y. (2020). Zebrafish: An emerging model to study microplastic and nanoplastic toxicity. Science of the Total Environment, 2020, 138707.

Boiko, N., & Sanagursky, D. (2000). Dynamika transmembrannoho potentsialu zarodkiv v’yuna v umovakh vplyvu ioniv vazhkykh metaliv [Dynamics of transmembrane potential of germ breeding in conditions of influence of heavy metal ions]. Visnyk L’vivs’koho Universytetu, Seriya Biolohichna, 25, 3–7 (in Ukrainian).

Boiko, N. M., Tselevych, M. V., & Sanagursky, D. I. (2004). Aktyvnist’ Na+, K+-ATFazy membran zarodkiv v’yuna (Misgurnus fossilis L.) za diyi kationiv vazhkykh metaliv [Activity of membrane Na+, K+-АТР-ase of embryos of loach (Misgurnus fossilis L.) under the influence of heavy metal cations]. Ukrayinskyy Biokhimichnyy Zhurnal, 76(2), 59–63 (in Ukrainian).

Bregestovski, P., Medina, I., & Goyda, E. (1992). Regulation of potassium conductance in the cellular membrane at early embryogenesis. Journal of Physiology-Paris, 86, 109–115.

Cervera, J., Manzanares, J. A., Mafe, S., & Levin, M. (2019). Synchronization of bioelectric oscillations in networks of nonexcitable cells: From single-cell to multicellular states. The Journal of Physical Chemistry B, 123(18), 3924–3934.

Cervera, J., Pietak, A., Levin, M., & Mafe, S. (2018). Bioelectrical coupling in multicellular domains regulated by gap junctions: A conceptual approach. Bioelectrochemistry, 123, 45–61.

Chen, C., Bu, W., Ding, H., Li, Q., Wang, D., Bi, H., & Guo, D. (2017). Cytotoxic effect of zinc oxide nanoparticles on murine photoreceptor cells via potassium channel block and Na+/K+‐ATPase inhibition. Cell Proliferation, 50(3), e12339.

Chrishtop, V. V., & Pakhrova, O. A. (2014). Primeneniye klasternogo i korrelyatsionnogo analiza dlya otsenki gemoreologicheskikh pokazateley u bol’nykh essentsial’noy arterial’noy gipertenziyey [Application of cluster and correlation analysis to assess hemorheological parameters in patients with essential arterial hypertension]. Uspekhi Sovremennogo Yestestvoznaniya, 9, 11–16 (in Russian).

Cousins, R. J., Liuzzi, J. P., & Lichten, L. A. (2006). Mammalian zinc transport, trafficking, and signals. Journal of Biological Chemistry, 281(34), 24085–24089.

Curis, E., Nicolis, I., Bensaci, J., Deschamps, P., & Bénazeth, S. (2009). Mathematical modeling in metal metabolism: Overview and perspectives. Biochimie, 91(10), 1238–1254.

Dehbandi, R., Fakhri, Y., Sarafraz, M., Nematolahi, A., Dehghani, S. S., Gholizadeh, A., & Khaneghah, A. M. (2020). Potentially toxic elements (PTEs) in the fillet of narrow-barred spanish mackerel (Scomberomorus commerson): A global systematic review, meta-analysis and risk assessment. Biological Trace Element Research, 2020, 1–10.

Dos Santos, J. A., Soares, C. M., & Bialetzki, A. (2020). Effects of pH on the incubation and early development of fish species with different reproductive strategies. Aquatic Toxicology, 219, 105382.

Gárriz, Á., & Miranda, L. A. (2020). Effects of metals on sperm quality, fertilization and hatching rates, and embryo and larval survival of pejerrey fish (Odontesthes bonariensis). Ecotoxicology, 29(7), 1072–1082.

Gerasimenko, T. N., Senyavina, N. V., Anisimov, N. U., & Tonevitskaya, S. A. (2016). A model of cadmium uptake and transport in Caco-2 cells. Bulletin of Experimental Biology and Medicine, 161(1), 187–192.

Gökalp, F. D., Doğanlar, O., Doğanlar, Z. B., & Güner, U. (2020). The genotoxic effects of mixture of aluminum, arsenic, cadmium, cobalt, and chromium on the gill tissue of adult zebrafish (Danio rerio Hamilton, 1822). Drug and Chemical Toxicology, 2020, 1–10.

Gouva, E., Nathanailides, C., Skoufos, I., Paschos, I., Athanassopoulou, F., & Pappas, I. S. (2020). Comparative study of the effects of heavy metals on embryonic development of zebrafish. Aquaculture Research, 51(8), 3255–3267.

Grech, A., Brochot, C., Dorne, J. L., Quignot, N., Bois, F. Y., & Beaudouin, R. (2017). Toxicokinetic models and related tools in environmental risk assessment of chemicals. Science of the Total Environment, 578, 1–15.

Isaza, D. F. G., Cramp, R. L., & Franklin, C. E. (2020). Living in polluted waters: A meta-analysis of the effects of nitrate and interactions with other environmental stressors on freshwater taxa. Environmental Pollution, 261, 114091.

Ivashkiv, L., Hraduk, M., & Sanagursky, D. (2001). Analiz kros-korelyatsiy u chasovykh zminakh fizyko-khimichnykh pokaznykiv rozvytku zarodkiv v’yuna [Analysis of cross-correlations in temporary changes of physical and chemical parameters of loach germs’ development]. Visnyk L’vivs’koho Universytetu, Seriya Biolohichna, 27, 3–11 (in Ukrainian).

Jakimska, A., Konieczka, P., Skóra, K., & Namieśnik, J. (2011). Bioaccumulation of metals in tissues of marine animals, Part I: The role and impact of heavy metals on organisms. Polish Journal of Environmental Studies, 20(5), 1117–1125.

Kennedy, C. J. (2011). Toxicology: The toxicology of metals in fishes. In: Encyclopedia of fish physiology. Elsevier, New York. Pp. 2061–2068.

Kerekes, F., Kollár, T., Gazsi, G., Kása, E., Urbányi, B., Csenki-Bakos, Z., & Horváth, Á. (2020). Investigation of fertilizing capacity of zebrafish (Danio rerio) sperm exposed to heavy metals. Dose-Response, 18(2), 1559325820919597.

Klein, R. D., Nogueira, L. S., Domingos-Moreira, F. X. V., Costa, P. G., Bianchini, A., & Wood, C. M. (2019). Effects of sublethal Cd, Zn, and mixture exposures on antioxidant defense and oxidative stress parameters in early life stages of the purple sea urchin Strongylocentrotus purpuratus. Aquatic Toxicology, 217, 105338.

Lacave, J. M., Retuerto, A., Vicario-Parés, U., Gilliland, D., Oron, M., Cajaraville, M. P., & Orbea, A. (2016). Effects of metal-bearing nanoparticles (Ag, Au, CdS, ZnO, SiO2) on developing zebrafish embryos. Nanotechnology, 27(32), 325102.

Levin, M., & Martyniuk, C. J. (2018). The bioelectric code: An ancient computational medium for dynamic control of growth and form. Biosystems, 164, 76–93.

Martinez, C. S., Igartúa, D. E., Calienni, M. N., Feas, D. A., Siri, M., Montanari, J., Chiaramoni, N. S., Alonso, S. del D., & Prieto, M. J. (2017). Relation between biophysical properties of nanostructures and their toxicity on zebrafish. Biophysical Reviews, 9(5), 775–791.

Pai, V. P., Martyniuk, C. J., Echeverri, K., Sundelacruz, S., Kaplan, D. L., & Levin, M. (2016). Genome‐wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation. Regeneration, 3(1), 3–25.

Puar, P., Niyogi, S., & Kwong, R. W. M. (2020). Regulation of metal homeostasis and zinc transporters in early-life stage zebrafish following sublethal waterborne zinc exposure. Aquatic Toxicology, 225, 105524.

Razzhevaikin, V. N., & Shpitonkov, M. I. (2008). Korrelyatsionnaya adaptometriya. Modeli i prilozheniya k biomeditsinskim sistemam [Correlation adaptometry. Models and applications to biomedical systems]. Matematicheskoe Modelirovanie, 20(8), 13–27.

Seneviratne, M., Rajakaruna, N., Rizwan, M., Madawala, H. M. S. P., Ok, Y. S., & Vithanage, M. (2019). Heavy metal-induced oxidative stress on seed germination and seedling development: A critical review. Environmental Geochemistry and Health, 41(4), 1813–1831.

Sfakianakis, D. G., Renieri, E., Kentouri, M., & Tsatsakis, A. M. (2015). Effect of heavy metals on fish larvae deformities: A review. Environmental Research, 137, 246–255.

Sfiru, R., Cârdei, P., Vlăduţ, V., & Matache, M. (2018). The role of mathematical modeling in research in the field of bioaccumulation of heavy metals. Annals of the Faculty of Engineering Hunedoara, 16(4), 13–18.

Shcherbachenko, O. I. (2014). Vazhki metaly yak toksychnyy faktor zabrudnennya pryrodnoho seredovyshcha. Stiykist’ i adaptatsiya roslyn do yikh vplyvu [Heavy metals as a toxic factor of pollution of the natural environment. Resilience and adaptation of plants to their influence]. Naukovi Zapysky Derzhavnoho Pryrodoznavchoho Muzeyu, 59, 157–182 (in Ukrainian).

Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: An overview. Indian Journal of Pharmacology, 43(3), 246.

Sonnack, L., Klawonn, T., Kriehuber, R., Hollert, H., Schäfers, C., & Fenske, M. (2017). Concentration dependent transcriptome responses of zebrafish embryos after exposure to cadmium, cobalt and copper. Comparative Biochemistry and Physiology, Part D: Genomics and Proteomics, 24, 29–40.

Sundelacruz, S., Levin, M., & Kaplan, D. L. (2009). Role of membrane potential in the regulation of cell proliferation and differentiation. Stem Cell Reviews and Reports, 5(3), 231–246.

Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy metals toxicity and the environment. In: Luch. A. (Ed.). Molecular, clinical and environmental toxicology. Springer, Basel. Pp. 133–164.

Ugwuja, E. I., Vincent, N., Ikaraoha, I. C., & Ohayi, S. R. (2020). Zinc ameliorates lead toxicity by reducing body Pb burden and restoring Pb-induced haematological and biochemical derangements. Toxicology Research and Application, 4, 2397847320956562.

Vallee, B. L., & Falchuk, K. H. (1993). The biochemical basis of zinc physiology. Physiological Reviews, 73(1), 79–118.

Wang, W. X., & Tan, Q. G. (2019). Applications of dynamic models in predicting the bioaccumulation, transport and toxicity of trace metals in aquatic organisms. Environmental Pollution, 252, 1561–1573.

Whited, J. L., & Levin, M. (2019). Bioelectrical controls of morphogenesis: From ancient mechanisms of cell coordination to biomedical opportunities. Current Opinion in Genetics and Development, 57, 61–69.

Yakimenko, O. A. (2019). Engineering Computations and Modeling in MATLAB / Simulink. American Institute of Aeronautics and Astronautics, Reston.

Yoo, J. W., Cho, H., Lee, K. W., Won, E. J., & Lee, Y. M. (2020). Combined effects of heavy metals (Cd, As, and Pb): Comparative study using conceptual models and the antioxidant responses in the brackish water flea. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 239, 108863.

Zhou, Y., Wong, C. O., Cho, K. J., Van Der Hoeven, D., Liang, H., Thakur, D. P., & Hu, H. (2015). Membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling. Science, 349(6250), 873–876.

How to Cite
Galyk, G. V., Fedorovych, Z. Y., Lychkovsky, E. I., & Vorobets, Z. D. (2021). Mathematical model of transmembrane potential dynamics of loach early embryogenesis . Regulatory Mechanisms in Biosystems, 12(1), 58-64.

Most read articles by the same author(s)