Glutathione content in sperm cells of infertile men

  • R. V. Fafula Danylo Halytsky Lviv National Medical University
  • O. K. Onufrovych Danylo Halytsky Lviv National Medical University
  • U. P. Iefremova Danylo Halytsky Lviv National Medical University
  • O. V. Melnyk Danylo Halytsky Lviv National Medical University
  • I. A. Nakonechnyi Danylo Halytsky Lviv National Medical University
  • D. Z. Vorobets Danylo Halytsky Lviv National Medical University
  • Z. D. Vorobets Danylo Halytsky Lviv National Medical University
Keywords: glutathione, glutathione peroxidase, spermatozoa, pathospermia, male infertility

Abstract

Hyperproduction of reactive oxygen species can damage sperm cells and is considered to be one of the mechanisms of male infertility. Cell protection from the damaging effects of free radicals and lipid peroxidation products is generally determined by the degree of antioxidant protection. Glutathione is non-enzymatic antioxidant which plays an important protective role against oxidative damages and lipid peroxidation. The aim of the present work is to determine the content of reduced and oxidized glutathione in sperm cells of infertile men. Semen samples from 20 fertile men (normozoospermics) and 72 infertile patients (12 oligozoospermics, 17 asthenozoospermics, 10 oligoasthenozoosper­mics and 33 leucocytospermic) were used. The total, oxidized (GSSG) and reduced (GSH) glutathione levels were measured spectrophotometrically. The levels of total glutathione were significantly lower in the spermatozoa of patients with oligozoo-, asthenozoo- and oligoasthenozoospermia than in the control. Infertile groups showed significantly decreased values of reduced glutathione in sperm cells vs. fertile men, indicating an alteration of oxidative status. The oxidized glutathione levels in sperm cells of infertile men did not differ from those of normozoospermic men with proven fertility. The GSH/GSSG ratio was significantly decreased in the oligo-, astheno- and oligoasthenozoospermic groups compared to the normozoospermic group. In patients with leucocytospermia the GSH/GSSG ratio was lower but these changes were not significant. In addition, glutathione peroxidase activity in sperm cells was decreased in patients with oligozoo-, astenozoo-, oligoastenozoospermia and with leucocytospermia. The most significant changes in glutathione peroxidase activity were observed in infertile men with leucocytospermia. Decreased GSH/GSSG ratio indicates a decline in redox-potential of the glutathione system in sperm cells of men with decreased fertilizing potential. Redistribution between oxidized and reduced forms of glutathione can be caused by depletion of intracellular stores of glutathione and intensification of lipid peroxidation processes. This leads to increased production of reactive oxygen species, further depletion of antioxidant pools and disturbances of structure and function of spermatozoa. Our results indicate that the evaluation of reduced glutathione level and GSH/GSSG ratio in sperm cells of infertile men can be helpful in fertility assessment. 

References

Anderson, M. E. (1985). Determination of glutathione and glutathione disulfide in biological samples. Methods in Enzymology, 113, 548–555.

Atig, F., Raffa, M., Habib, B.-A., Kerkeni, A., Saad, A., & Ajina, M. (2012). Altered antioxidant status and increased lipid perxidation in seminal plasma of Tunisian infertile men. International Journal of Biological Sciences, 8(1), 139–149.

Atig, F., Raffa, M., Habib, B.-A., Kerkeni, A., Saad, A., & Ajina, M. (2012). Impact of seminal trace element and glutathione levels on semen quality of Tunisian infertile men. BMC Urology, 12, 6.

Aydemir, B., Onaran, I., Kiziler, A. R., Alici, B., & Akyolcu, M. C. (2007). Increased oxidative damage of sperm and seminal plasma in men with idiopathic infertility is higher in patients with glutathione S-transferase Mu-1 null genotype. Asian Journal of Andrology, 9(1), 108–115.

Bhardwaj, A., Verma, A., Majumdar, S., & Khanduja, K. L. (2000). Status of vitamin E and reduced glutathione in semen of oligozoospermic and azoospermic patients. Asian Journal of Andrology, 2(3), 225–228.

De Minicis, S., & Brenner, D. A. (2008). Oxidative stress in alcoholic liver disease: Role of NADPH oxidase complex. Journal of Gastroenterology and Hepatology, 1, 98–103.

Ebisch, I. M. W., Peters, W. H. M., Thomas, C. M. G., Wetzels, A. M., Peer, P. G., & Steegers-Theunissen, R. P. (2006). Homocysteine, glutathione and related thiols affect fertility parameters in the subfertile couple. Human Reproduction, 21, 1725–1733.

Eskiocak, S., Gozen, A. S., Yapar, S. B., Tavas, F., Kilic, A. S., & Eskiocak, M. (2005). Glutathione and free sulphydryl content of seminal plasma in healthy medical students during and after exam stress. Human Reproduction, 9, 2595–6000.

Fafula, R. V., Оnufrovych, О. K., Vorobets, D. Z., Iefremova, U. P., & Vorobets, Z. D. (2017). Glutathione antioxidant protection system in ejaculated spermatozoa of infertile men with different forms of pathospermia. Studia Biologica, 11(1), 17–24.

Garrido, N., Meseguer, M., Alvarez, J., Simón, C., Pellicer, A., & Remohí, J. (2004). Relationship among standard semen parameters, glutathione peroxidase / glutathione reductase activity, and mRNA expression and reduced glutathione content in ejaculated spermatozoa from fertile and infertile men. Fertility and Sterility, 82(3), 1059–1066.

Griffith, O. W. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry, 106, 207–212.

Hesham, N., Moemen, L. A., & Abu Elela, M. H. (2008). Studing the levels of malondialdehyde and antioxidant parameters in normal and abnormal human seminal plasma. Australian Journal of Basic and Applied Sciences, 2(3), 773–778.

Hubskyi, Y. I. (2015). Smert kletki: Svobodnie radically, necros, apoptos [Cell death: Free radicals, necrosis, apoptosis]. Nova Knyga, Vynnyca (in Russian).

Iskra, R. J. (2011). Stan glutationovoi lanky antioxidantnoi systemy v riznyh organah i tkanynah szuriv za dii nanoacqucytratu chromu [State of glutathione component of antioxidant system in different organs and tissues of rats under the influence of chromium nanoaquarcitate]. Experimental and Clinical Physiology and Biochemistry, 3, 28–33 (in Ukrainian).

Iskra, R. J. (2011). State of glutathione component of antioxidant system in different organs and tissues of rats under the influence of chromium nanoaquarcitate. Experimental and Clinical Physiology and Biochemistry, 3, 28–33.

Kalinina, E. V., Chernov, N. N., & Novichkova, M. D. (2014). Role of glutathione, glutathione transferase and glutaredoxin in regulation of redox-dependent processes. Biochemistry, 79(13), 1562–1583.

Korzhov, V. I., & Zhadan, V. N. (2007). Rol systemy glutationa v processah detoxikacii i antioxidantnoi zaszyty [Role of glutathione system in the processes of detoxification and antioxidant protection]. Journal of Academy of Medical Sciences of Ukraine, 13, 3–19 (in Russian).

Koval, T. V., Nazarova, O. O., & Matyshevska, O. P. (2008). Zmina vmistu glutationu v timocytah szuriv za indukcii apoptosu pid vplyvom H2O2 abo radiacii [Change in glutathione content in rat thymocytes under apoptosis induced by H2O2 or X irradiation]. Ukrainian Biochemical Journal, 80(2), 114–119 (in Ukrainian).

Kurilova, L. C., Krutetskaya, Z. I., Lebedev, O. E., & Antonov, V. H. (2008). Vliyanie okislennogo glutationa i ego farmokologicheskogo analoga preparata glutoksim na vnitrikletochnuyu koncentraciu Ca2+ v macrofagah [The effect of oxidized glutathione and its pharmacological analogue, glutoxim, on intracellular Ca2+ concentration in macrophages]. Cytology, 50(5), 452–461 (in Russian).

Lewis, S. E., Sterling, E. S., Young, I. S., & Thompson, W. (1997). Comparison of individual antioxidants of sperm and seminal plasma in fertile and infertile men. Fertility and Sterility, 67(1), 142–147.

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenolreagent. Journal of Biological Chemistry, 193, 265–275.

Mendez, I., Vázquez-Martínez, O., Hernández-Muñoz, R., Valente-Godínez, H., & Díaz-Muñoz, M. (2016). Redox regulation and pro-oxidant reactions in the physiology of circadian systems. Biochemie, 124, 178–186.

Micheli, L., Cerretani, D., Collodel, G., Menchiari, A., Moltoni, L., Fiaschi, A. I., & Moretti, E. (2016). Evaluation of enzymatic and non-enzymatic antioxidants in seminal plasma of men with genitourinary infections, varicocele and idiopathic infertility. Andrology, 4(3), 456–464.

Mishchuk, O. V., & Stolyar, O. B. (2008). Vpliv pesticidu acetamipridu na biochimichni pokaznyky u tkanynah prisnovodnogo dvostulkovogo moluska Anodonta cygnea L. (Unionidae) [The effect of pesticide acetamiprid on the status of biochemical markers in tissues of freshwater bivalve mussels Anodonta cygnea L. (Unionidae)]. Ukrainian Biochemical Journal, 80(5), 117–124 (in Ukrainian).

Ochsendorf, F. R., Buhl, R., Bästlein, A., & Beschmann, H. (1998). Glutathione in spermatozoa and seminal plasma of infertile men. Human Reproduction, 13(2), 353–359.

Onufrovych, O. K., Fafula, R. V., Nakonechnyi, I. A., Vorobets, D. Z., Iefremova, U. P., & Vorobets, Z. D. (2016). Activnist glutation-zalezhyh enzymiv spermatozoidiv za umov patospermii [Activity of glutathione-dependent enzymes in spermatozoa in patients with pathospermia]. Medical and Clinacal Chemistry, 18(4), 5–10 (in Ukrainian).

Raijmakers, M. T., Roelofs, H. M., Steegers, E. A., Steegers-Theunissen, R. R., Mulder, T. P., Knapen, M. F., Wong, W. Y, & Peters, W. H. (2003). Glutathione and glutathione S-transferases A1-1 and P1-1 in seminal plasma may play a role in protecting against oxidative damage to spermatozoa. Fertility and Sterility, 79(1), 169–172.

Smirnov, L. P., & Suhovskaya, I. V. (2014). Rol glutationa v funkcionirovanii system antioxidantnoi zaszyty i biotransformacii (Obzor) [Role of glutathione in antioxidant protection and biotransformation (Review)]. The Scientists Notes of Petrozavodsk State University. Biological Science, 143, 34–40 (in Russian).

Spickett, C. M. (2013). The lipid peroxidation product 4-hydroxy-2-nonenal: advances in chemistry and analysis. Redox Biology, 1(1), 145–152.

Viloria, T., Meseguer, M., Martínez-Conejero, J. A., O’Connor, J. E., Remohí, J., Pellicer, A., & Garrido, N. (2010). Cigarette smoking affects specific sperm oxidative defenses but does not cause oxidative DNA damage ininfertile men. Fertility and Sterility, 94(2), 631–637.

Wong, W. Y., Flik, G., Groenen, P. M., Swinkels, D. W., Thomas, C. M., Copius-Peereboom, J. H., Merkus, H. M., & Steegers-Theunissen, R. P. (2001). The impact of calcium, magnesium, zinc, and copper in blood and seminal plasma on semen parameter in men. Reproductive Toxicology, 15(2), 131–136.

Published
2017-04-22
How to Cite
Fafula, R. V., Onufrovych, O. K., Iefremova, U. P., Melnyk, O. V., Nakonechnyi, I. A., Vorobets, D. Z., & Vorobets, Z. D. (2017). Glutathione content in sperm cells of infertile men. Regulatory Mechanisms in Biosystems, 8(2), 157-161. https://doi.org/10.15421/021725