Biochemical parameters of blood in cows in latent course of leptospirosis

  • V. I. Holovakha Bila Tserkva National Agrarian University
  • A. O. Slyusarenko Bila Tserkva National Agrarian University
  • O. S. Petrenko SSRI of Laboratory Diagnostics and Veterinary-Sanitary Expertise
  • N. I. Suslova Dnipro State Agrarian and Economic University
Keywords: hepatocholangitis; serovars of Leptospira; enzymes; reaction of microagglutination; hepatopathy; lactating cows.

Abstract

Changes in the biochemical parameters of blood in cows in the latent course of leptospirosis have been studied by the results of the reaction of microagglutination (RMA). The dynamics of biochemical blood parameters is manifested by hyperproteinemia, dysproteinemia, hemolytic anemia, hyperbilirubinemia, intra- and extrahepatic cholestasis, hyperfermentemia, mineral metabolism disorders, in particular hypocalcemia, hypophosphatemia, indicating the development of hepatopathy which should be classified as hepatocholangitis. It was determined that the pathological process is manifested in all animals for the titer of antibodies to one or another Leptospira serovar. Significant changes from the side of the hepatobiliary system in infested cows for the antibody titer kabura equaling 1:100, polonica 1:200, ballum 1:100, szvajzak 1:100–1:200, bratislava 1:800 and in animals for the titers kabura of 1:100–1:200; polonium 1:100; szvajzak 1:100–1:200; ballum 1:100; bratislava 1:100–1:200. At leptospirosis caused by bratislava and ballum serovars, a disorder of the functional state of the hepatobiliary system, characterized by an increase in the level of total protein, bilirubin, AST, GGTP and ALP activity was diagnosed as the urea, calcium and phosphorus levels in blood decreased. In the case of the latent course of the disease caused by kabura, polonica, szvajzak, ballumand bratislava serovars, a probably higher concentration of bilirubin, activity of aminotransferases (AST and ALAT), GGTP and ALP was determined in comparison to clinically healthy animals. In cows, in the presence of antibody titers kabura 1:100, polonica 1:200, ballum 1:100, szvajzak 1:100–1:200; bratislava 1:800, in 22.2% of cases, we recorded increase in the total protein against the background of dysproteinemia in 50.0–88.9% of animals, and increase in bilirubin in 78.6%, and increase in the activity of blood serum enzymes (AST, ALAT, GGTP, ALP), and also hypocalcemia and hypophosphatemia in 33.3–100.0%. The conducted studies indicate that in latent leptospirosis in cows, in addition to etiotropic therapy, one should include in the protocol the pharmacological correction preparations, which would contribute to the restoration of the functional state of the hepatobiliary system.

References

Allan, K. J., Halliday, J. E. B., Moseley, M., Carter, R. W., Ahmed, A., Goris, M. G. A., Hartskeerl, R. A., Keyyu, J., Kibona, T., Maro, V. P., Maze, M. J., Mmbaga, B. T., Tarimo, R., Crump, J. A., & Cleaveland, S. (2018). Assessment of animal hosts of pathogenic Leptospira in Northern Tanzania. PLoS Neglected Tropical Diseases, 12(6), 18.

Arent, Z. J., Andrews, S., Adamama-Moraitou, K., Gilmore, C., Pardali, D., & Ellis, W. A. (2012). Emergence of novel Leptospira serovars: A need for adjusting vaccination policies for dogs? Epidemiology and Infection, 141(06), 1148–1153.

Ayral, F. C., Bicout, D. J., Pereira, H., Artois, M., & Kodjo, A. (2014). Distribution of Leptospira serogroups in cattle herds and dogs in France. The American Journal of Tropical Medicine and Hygiene, 91(4), 756–759.

Campos, Â. P., Miranda, D. F. H., Rodrigues, H. W. S., da Silva Carneiro Lustosa, M., Martins, G. H. C., Mineiro, A. L. B. B., Castro, V., Azevedo, S. S., & de Sousa Silva, S. M. M. (2017). Seroprevalence and risk factors for leptospirosis in cattle, sheep, and goats at consorted rearing from the State of Piauí, Northeastern Brazil. Tropical Animal Health and Production, 49(5), 899–907.

Chadsuthi, S., Chalvet-Monfray, K., Wiratsudakul, A., Suwancharoen, D., & Cappelle, J. (2018). A remotely sensed flooding indicator associated with cattle and buffalo leptospirosis cases in Thailand 2011–2013. BMC Infectious Diseases, 18(1), 1–9.

Correia, L., Loureiro, A. P., & Lilenbaum, W. (2018). Reduced susceptibility in leptospiral strains of bovine origin might impair antibiotic therapy. Epidemiology and Infection, 147, 5.

Daud, A., Fuzi, N. M. H. M., Arshad, M. M., Kamarudin, S., Mohammad, W. M. Z. W., Amran, F., & Ismail, N. (2018). Leptospirosis seropositivity and its serovars among cattle in Northeastern Malaysia. Veterinary World, 11(6), 840–844.

Dreyfus, A., Wilson, P., Benschop, J., Collins-Emerson, J., Verdugo, C., & Heuer, C. (2018). Seroprevalence and herd-level risk factors for seroprevalence of Leptospira spp. in sheep, beef cattle and deer in New Zealand. New Zealand Veterinary Journal, 66(6), 302–311.

Ellis, W. A. (1990). Leptospirosis: A review of veterinary aspects. Irish Veterinary News, 12, 6–12.

Ellis, W. A. (2010). Control of canine leptospirosis in Europe: Time for a change? Veterinary Record, 167(16), 602–605.

Ferrer de Morais, E. G., Magalhães, F. J. R., De Lima Filho, C. D. F., Brandespim, D. F., De Oliveira, P. R. F., Da Costa, D. F., De Azevedo, S. S., & Mota, R. A. (2018). Geo-epidemiological study of Leptospira spp. infection in cattle, feral cats and rodents of the Fernando de Noronha Island, Brazil. Acta Scientiae Veterinariae, 46(1), 9.

Guedes, I. B., Araújo, S. A. de A., de Souza, G. O., de Souza Silva, S. O., Taniwaki, S. A., Cortez, A., Brandão, P. E., & Heinemann, M. B. (2019). Circulating Leptospira species identified in cattle of the Brazilian Amazon. Acta Tropica, 191, 212–216.

Holovakha, V. I. (2000). Zminy hepatobiliarnoi systemy u konei pry infektsiinii rynopnevmonii, leptospirozi ta stakhibotriotoksykozi [Changes in hepatobiliary system in horses with infectious rhinopneumonia, leptospirosis and stabiotrotoxicosis]. Visnyk Bilotserkivskoho Derzhavnoho Ahrarnoho Universytetu, 13(2), 49–54 (in Ukrainian).

Jaeger, L. H., Loureiro, A. P., & Lilenbaum, W. (2018). VNTR analysis demonstrates new patterns and high genetic diversity of Leptospira sp. of animal origin in Brazil. Letters in Applied Microbiology, 67(2), 183–189.

Ko, A. I., Goarant, C., & Picardeau, M. (2009). Leptospira: The dawn of the molecular genetics’ era for an emerging zoonotic pathogen. Nature Reviews Microbiology, 7(10), 736–747.

Le Turnier, P., & Epelboin, L. (2018). Mise au point sur la leptospirose. La Revue de Médecine Interne, 40(5), 306–312.

Libonati, H. A., Santos, G. B., Souza, G. N., Brandão, F. Z., & Lilenbaum, W. (2018). Leptospirosis is strongly associated to estrus repetition on cattle. Tropical Animal Health and Production, 50(7), 1625–1629.

Martins, G., & Lilenbaum, W. (2017). Control of bovine leptospirosis: Aspects for consideration in a tropical environment. Research in Veterinary Science, 112, 156–160.

Martins, G., Oliveira, C. S., & Lilenbaum, W. (2018). Dynamics of humoral response in naturally-infected cattle after vaccination against leptospirosis. Acta Tropica, 187, 87–91.

Minova, L. V., Chegunov, P. V., & Matjash, V. I. (2009). Kliniko-patogeneticheskie mehanizmy ostroj pochechnoj nedostatochnosti [Clinical and pathogenetic mechanisms of acute renal failure]. Health of Ukraine, 3(2), 18–24 (in Russian).

Mughini-Gras, L., Bonfanti, L., Natale, A., Comin, A., Ferronato, A., La Greca, E., Patregnani, T., Lucchese, L., & Marangon, S. (2013). Application of an integrated outbreak management plan for the control of leptospirosis in dairy cattle herds. Epidemiology and Infection, 142(06), 1172–1181.

Olivera, M., Chaparro, J. J., Chaparro, Y., Piedrahita, D., Fernández-Silva, J., Londoño, J., Palacio, L. G., Ramírez-Vásquez, N., & Fernández-Silva, J. (2018). Cross sectional study of 13 Leptospira serovars in a Colombian dairy region. Revista Colombiana de Ciencias Pecuarias, 31(1), 10–16.

Petrenko, A. (2015). Liver and kidney function in dogs afflicted with various Leptospira serovar. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 17(2), 177–183 (in Ukrainian).

Picardeau, M. (2017). Virulence of the zoonotic agent of leptospirosis: Still terra incognita? Nature Reviews Microbiology, 15(5), 297–307.

Pinna, M. H., Martins, G., Loureiro, A. P., & Lilenbaum, W. (2018). Detection of bovine carriers of Leptospira by serological, bacteriological, and molecular tools. Tropical Animal Health and Production, 50(4), 883–888.

Pratt, N., Conan, A., & Rajeev, S. (2017). Leptospira seroprevalence in domestic dogs and cats on the Caribbean Island of Saint Kitts. Veterinary Medicine International, 2017, 1–6.

Rajala, E. L., Sattorov, N., Boqvist, S., & Magnusson, U. (2017). Bovine leptospirosis in urban and peri-urban dairy farming in low-income countries: A “One Health” issue? Acta Veterinaria Scandinavica, 59(1), 1–4.

Reichel, M. P., Wahl, L. C., & Hill, F. I. (2018). Review of diagnostic procedures and approaches to infectious causes of reproductive failures of cattle in Australia and New Zealand. Frontiers in Veterinary Science, 5, 1–15.

Rocha, B. R., Balaro, M., Pereira, P. V., Martins, G., & Lilenbaum, W. (2018). Chronic experimental genital leptospirosis with autochthonous Leptospira santarosai strains of serogroup Sejroe. Small Ruminant Research, 164, 28–31.

Shiokawa, K., Welcome, S., Kenig, M., Lim, B., & Rajeev, S. (2019). Epidemiology of Leptospira infection in livestock species in Saint Kitts. Tropical Animal Health and Production, 2019, 1–6.

Shrestha, R., McKenzie, J. S., Gautam, M., Adhikary, R., Pandey, K., Koirala, P., Miller, L. C., Collins-Emerson, J., Craig, S. B., Shrestha, S, & Heuer, C. (2018). Determinants of clinical leptospirosis in Nepal. Zoonoses and Public Health, 65(8), 972–983.

Subharat, S., Wilson, P., Heuer, C., & Collins-Emerson, J. (2012). Longitudinal serological survey and herd-level risk factors for Leptospira spp. serovars Hardjo-bovis and Pomona on deer farms with sheep and/or beef cattle. New Zealand Veterinary Journal, 60(4), 215–222.

Sunder, J., Sujatha, T., Kundu, A., & Kundu, M. S. (2017). Carrier status and seroprevalence of leptospirosis in cattle of South Andaman. Indian Journal of Animal Research, 52(1), 140–143.

Tagliabue, S., Figarolli, B. M., D'Incau, M., Foschi, G., Gennero, M. S., Giordani, R., Natale, A., Papa, P., Ponti, N., Scaltrito, D., Spadari, L., Vesco, G., & Ruocco, L. (2016). Serological surveillance of leptospirosis in Italy: Two-year national data (2010–2011). Veterinaria Italiana, 52(2), 129–138.

Ukhovskyi, V. V., Vydayko, N. B., Aliekseieva, G. B., Bezymennyi, M. V., Polupan, I. M., & Kolesnikova, I. P. (2018). Comparative analysis of incidence of leptospirosis among farm animals and humans in Ukraine. Regulatory Mechanisms in Biosystems, 9(3), 409–416.

Zarantonelli, L., Suanes, A., Meny, P., Buroni, F., Nieves, C., Salaberry, X., Briano, C., Ashfield, N., Da Silva Silveira, C., Dutra, F., Easton, C., Fraga, M., Giannitti, F., Hamond, C., Macías-Rioseco, M., Menéndez, C., Mortola, A., Picardeau, M., Quintero, J., Ríos, C., Rodríguez, V., Romero, A., Varela, G., Rivero, R., Schelotto, F., Riet-Correa, F., & Buschiazzo, A. (2018). Isolation of pathogenic Leptospira strains from naturally infected cattle in Uruguay reveals high serovar diversity, and uncovers a relevant risk for human leptospirosis. PLoS Neglected Tropical Diseases, 12(9), e0006694.

Published
2019-06-20
How to Cite
Holovakha, V. I., Slyusarenko, A. O., Petrenko, O. S., & Suslova, N. I. (2019). Biochemical parameters of blood in cows in latent course of leptospirosis . Regulatory Mechanisms in Biosystems, 10(2), 182-186. https://doi.org/10.15421/021927

Most read articles by the same author(s)