A modern look at the molecular-biological mechanisms of breast tumours in dogs

Keywords: neoplasms; dogs; pathogenesis; markers of carcinogenesis; therapeutic targets.

Abstract

High morbidity and increase in the number of registrations of breast tumours in dogs, their wide application as biological models, discussion of numerous questions of oncogenesis, and the lack of a uniform/unified methodological approach to the study of molecular and biological mechanisms of treatment of cancer determine the relevance of the problem of cancer both in humans and in our domestic companions. The analysis of publications allowed us to establish the following patterns of carcinogenesis. The peculiarities of the biological behaviour of breast tumours depend on their pathomorphological structure. Genetic predisposition to breast cancer is characteristic only in the single breed aspect. Environmental factors are of critical relevance to carcinogenesis : chemical pollutants initiate oncogenesis indirectly – by altering the expression of several receptors, impaired endocrine balance and direct mutagenic effects. Reproductive status plays a key role in the initiation and progression of breast tumours by reducing the expression of estrogen, progesterone and prolactin receptor genes. The inflammatory response that accompanies the neoplasia process is characterized by increased production of cytokines, cyclooxygenase-2, interleukins (IL-1, IL-6, IL-8), vascular endothelial growth receptors, and impaired hemostatic status (oxidative stress), which promotes progression of disease. In breast cancer in dogs, genomic instability leads to genomic aberrations, and subsequently, mutations that support the proliferation, survival and dissemination of neoplastic cells. The initiation and progression of mammary gland tumours is provided by cancer stem cells by disrupting the regulation of precursor cell self-renewal, which also predispose to resistance to chemotherapeutic agents, radiation, and hormonal cancer therapy. The analysis of the publications revealed the major markers of carcinogenesis that could potentially be used as biological targets for the design of modern diagnostic strategies and high-performance therapeutic protocols.

References

Abdelmegeed, S. M., & Mohammed, S. (2018). Canine mammary tumors as a model for human disease (Review). Oncology Letters, 15(6), 8195–8205.

Alvarez, C. E. (2014). Naturally occurring cancers in dogs: Insights for translational genetics and medicine. Institute for Laboratory Animal Research Journal, 55(1), 16–45.

Amini, P., Nassiri, S., Malbon, A., & Markkanen, E. (2019). Differential stromal reprogramming in benign and malignant naturally occurring canine mammary tumours identifies disease-promoting stromal components. BioRxiv, 2019, 1–21.

Andrade, F. H., Figueiroa, F. C., Bersano, P. R., Bissacot, D. Z., & Rocha, N. S. (2010). Malignant mammary tumor in female dogs: Environmental contaminants. Diagnostic Pathology, 5, 45.

Arnesen, K., Gamlem, H., Glattre, E., Moe, L., & Nordstoga, K. (1995). Registration of canine cancer. Tidsskrift for den Norske Laegeforening, 115(6), 714–717.

Bao, B., Ahmad, A., Azmi, A. S., Ali, S., & Sarkar, F. H. (2013). Overview of cancer stem cells (CSCs) and mechanisms of their regulation: Implications for cancer therapy. Current Protocols in Pharmacology, 61(1), 1–14.

Barbieri, F., Thellung, S., Ratto, A., Carra, E., Marini, V., Fucile, C., Bajetto, A., Pattarozzi, A., Würth, R., Gatti, M., Campanella, C., Vito, G., Mattioli, F., Pagano, A., Daga, A., Ferrari, A., & Florio, T. (2015). In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: Translational implications for human tumors. BMC Cancer, 15, 228.

Barbieri, F., Wurth, R., Ratto, A., Campanella, C., Vito, G., Thellung, S., Daga, A., Cilli, M., Ferrari, A., & Florio, T. (2012). Isolation of stem-like cells from spontaneous feline mammary carcinomas: Phenotypic characterization and tumorigenic potential. Experimental Cell Research, 318(7), 847–860.

Beauvais, W., Cardwell, J. M., & Brodbelt, D. C. (2012). The effect of neutering on the risk of mammary tumours in dogs – a systematic review. Journal of Small Animal Practice, 53(6), 314–322.

Bely, D. D., Rublenko, M. V., Samoyuluk, V. V., Yevtushenko, I. D., & Maslikov, S. N. (2019). Breast tumour size as a predictor of hemostatic system status and endothelial function in dogs. Regulatory Mechanisms in Biosystems, 10(3), 300–305.

Bhatti, S. F. M., Rao, N. A. S., Okkens, A. C., Mol, J. A., Duchateau, L., Ducatelle, R., van den Ingh, T. S. G. A. M., Tshamala, M., Van Ham, L. M. L., Coryn, M., Rijnberk, A., & Kooistra, H. S. (2007). Role of progestin-induced mammary-derived growth hormone in the pathogenesis of cystic endometrial hyperplasia in the bitch. Domestic Animal Endocrinology, 33(3), 294–312.

Bomko, V., Kropyvka, Y., Bomko, L., Chernyuk, S., Kropyvka, S., & Gutyj, B. (2018). Effect of mixed ligand complexes of zinc, manganese, and cobalt on the manganese balance in high-yielding cows during first 100-days lactation. Ukrainian Journal of Ecology, 8(1), 420–425.

Borge, K. S., Melin, M., Rivera, P., Thoresen, S. I., Webster, M. T., von Euler, H., Lindblad-Toh, K., & Lingaas, F. (2013). The ESR1 gene is associated with risk for canine mammary tumours. BMC Veterinary Research, 9, 69.

Brandão, Y. O., Colodel, M. M., Silva, G. N., Vexenat, S. C., Ferreira, I., Silva, Y. F. R. S., Bulla, C., & Rocha, N. S. (2013). Spontaneous mammary carcinomas in female dogs: Association between the immunohistochemical degree of aggressiveness of tumors, intensity of DNA damage and residues of pyrethroids. Open Journal of Pathology, 3, 133–137.

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer Journal for Clinicians, 68(6), 394–424.

Brisken, C., Hess, K., & Jeitziner, R. (2015). Progesterone and overlooked endocrine pathways in breast cancer pathogenesis. Endocrinology, 156(10), 3442–3450.

Bristow, R. G., & Hill, R. P. (2008). Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nature Reviews Cancer, 8(3), 180–192.

Brooks, S. A., Lomax-Browne, H. J., Carter, T. M., Kinch, C. E., & Hall, D. M. (2010). Molecular interactions in cancer cell metastasis. Acta Histochemica, 112(1), 3–25.

Bulkowska, M., Rybicka, A., Senses, K. M., Ulewicz, K., Witt, K., Szymanska, J., Taciak, B., Klopfleisch, R., Hellmén, E., Dolka, I., Gure, A. O., Mucha, J., Mikow, M., Gizinski, S., & Krol, M. (2017). MicroRNA expression patterns in canine mammary cancer show significant differences between metastatic and non-metastatic tumours. BMC Cancer, 17(1), e728.

Burrai, G. P., Tanca, A., De Miglio, M. R., Abbondio, M., Pisanu, S., Polinas, M., Pirino, S., Mohammed, S. I., Uzzau, S., Addis, M. F., & Antuofermo, E. (2015). Investigation of HER2 expression in canine mammary tumors by antibody-based, transcriptomic and mass spectrometry analysis: Is the dog a suitable animal model for human breast cancer? Tumor Biology, 36(11), 9083–9091.

Canadas, A., Santos, M., Medeiros, R., & Dias-Pereira, P. (2019). Influence of E-cadherin genetic variation in canine mammary tumour risk, clinicopathological features and prognosis. Veterinary and Comparative Oncology, 17(4), 489–496.

Canadas, A., Santos, M., Pinto, R., Medeiros, R., & Dias-Pereira, P. (2018). Catechol-o-methyltransferase genotypes are associated with progression and biological behaviour of canine mammary tumours. Veterinary and Comparative Oncology, 16(4), 664–669.

Canadas-Sousa, A., Santos, M., Leal, B., Medeiros, R., & Dias-Pereira, P. (2019). Estrogen receptors genotypes and canine mammary neoplasia. BMC Veterinary Research, 15(1), 325.

Carvalho, M. I., Pires, I., Prada, J., & Queiroga, F. L. (2014). A role for T-lympho­cytes in human breast cancer and in canine mammary tumors. BioMed Research International, 2014, e130894.

Carvalho, M. I., Silva-Carvalho, R., Pires, I., Prada, J., Bianchini, R., Jensen-Jarolim, E., & Queiroga, F. L. (2016). A comparative approach of tumor-associated inflammation in mammary cancer between humans and dogs. BioMed Research International, 2016, e4917387.

Chopra, S., Goel, S., Thakur, B., & Bhatia, A. (2018). Do different stemness markers identify different pools of cancer stem cells in malignancies: A study on ER+ and ER-breast cancer cell lines. Pathology and Oncology Research, 25, 1–8.

Chute, C. G., & Kohane, I. S. (2013). Genomic medicine, health information technology, and patient care. Journal of the American Medical Association, 309(14), 1467–1468.

Clemente, M., Pérez-Alenza, M. D., & Peña, L. (2010). Metastasis of canine in­flammatory versus non-inflammatory mammary tumours. Journal of Comparative Pathology, 143(2–3), 157–163.

Clemente, M., Sánchez-Archidona, A. R., Sardón, D., Díez, L., Martín-Ruiz, A., Ca­ceres, S., Sassi, F., Dolores Pérez-Alenza, M., Illera, J. C., Dunner, S., & Peña, L. (2013). Different role of COX-2 and angiogenesis in canine inflammatory and non-inflammatory mammary cancer. Veterinary Journal, 197(2), 427–432.

Davis, B. W., & Ostrander, E. A. (2014). Domestic dogs and cancer research: A breed-based genomics approach. Institute for Laboratory Animal Research Journal, 55(1), 59–68.

de Andrés, P. J., Illera, J. C., Cáceres, S., Díez, L., Pérez-Alenza, M. D., & Peña, L. (2013). Increased levels of interleukins 8 and 10 as findings of canine inflammatory mammary cancer. Veterinary Immunology and Immunopathology, 152(3–4), 245–251.

Dobson, J. M. (2013). Breed-predispositions to cancer in pedigree dogs. Veterinary Sciences, 2013, e941275.

Egenvall, A., Bonnett, B. N., Ohagen, P., Olson, P., Hedhammar, A., & von Euler, H. (2005). Incidence of and survival after mammary tumors in a population of over 80,000 insured female dogs in Sweden from 1995 to 2002. Preventive Veterinary Medicine, 69, 109–127.

Esbona, K., Inman, D., Saha, S., Jeffery, J., Schedin, P., Wilke, L., & Keely, P. (2016). COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Research, 18(1), 35.

Ettlin, J., Clementi, E., Amini, P., Malbon, A., & Markkanen, E. (2017). Analysis of gene expression signatures in cancer-associated stroma from canine mammary tumours reveals molecular homology to human breast carcinomas. International Journal of Molecular Sciences, 18(5), e1101.

Fan, X., Chen, W., Fu, Z., Zeng, L., Yin, Y., & Yuan, H. (2017). MicroRNAs, a subpopulation of regulators, are involved in breast cancer progression through regulating breast cancer stem cells. Oncology Letters, 14(5), 5069–5076.

Feng, Y., Spezia, M., Huang, S., Yuan, C., Zeng, Z., Zhang, L., Ji, X., Liu, W., Huang, B., Luo, W., Liu, B., Lei, Y., Du, S., Vuppalapati, A., Luu, H. H., Haydon, R. C., He, T. C., & Ren, G. (2018). Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes and Diseases, 5(2), 77–106.

Fenton, S. E. (2006). Endocrine-disrupting compounds and mammary gland deve­lopment: Early exposure and later life consequences. Endocrinology, 147(6), 18–24.

Figueroa, F. C., da Silva Zanetti, J., Ribeiro-Silva, A., Fonseca-Alves, C. E., & Rocha, N. S. (2015). Association of CD44+/CD24-cells to more aggressive molecular phenotypes in canine mammary carcinomas. International Journal of Cancer Research, 11, 119–127.

Fish, E. J., Irizarry, K. J., DeInnocentes, P., Ellis, C. J., Prasad, N., Moss, A. G., & Curt Bird, R. (2018). Malignant canine mammary epithelial cells shed exoso­mes containing differentially expressed microRNA that regulate oncogenic networks. BMC Cancer, 18(1), 832.

Frehse, M. S., Bracarense, A. P. F. R. L., Santos, N. J. R., Freire, R. L., Martins, M. I. M., Ono, E. Y. S., Bissoqui, L. Y., & Teixeira, E. M. K. (2015). Aflatoxins ingestion and canine mammary tumors: There is an association? Food and Chemical Toxicology, 84, 74–78.

García-Mendoza, M. G., Inman, D. R., Ponik, S. M., Jeffery, J. J., Sheerar, D. S., Van Doorn, R. R., & Keely, P. J. (2016). Neutrophils drive accelerated tumor progression in the collagen-dense mammary tumor microenvironment. Breast Cancer Research, 18(1), 49.

Gelaleti, G. B., Jardim, B. V., Leonel, C., Moschetta, M. G., & Zuccari, D. A. (2012). Interleukin-8 as a prognostic serum marker in canine mammary gland neoplasias. Veterinary Immunology and Immunopathology, 146(2), 106–112.

Giovannelli, P., Di Donato, M., Galasso, G., Di Zazzo, E., Medici, N., Bilancio, A., Migliaccio, A., & Castoria, G. (2019). Breast cancer stem cells: The role of sex steroid receptors. World Journal of Stem Cells, 11(9), 594–603.

Giraudeau, M., Sepp, T., Ujvari, B., Renaud, F., Tasiemski, A., Roche, B., Capp, J. P., & Thomas, F. (2019). Differences in mutational processes and intra-tumour heterogeneity between organs: The local selective filter hypothesis. Evolution, Medicine, and Public Health, 2019(1), 139–146.

Goebel, K., & Merner, N. D. (2017). A monograph proposing the use of canine mammary tumours as a model for the study of hereditary breast cancer susceptibility genes in humans. Veterinary Medical Science, 3(2), 51–62.

Gold, L. S., Slone, T. H., & Ames, B. N. (1998). What do animal cancer tests tell us about human cancer risk?: Overview of analyses of the carcinogenic potency database. Drug Metabolism Reviews, 30(2), 359–404.

Grüntzig, K., Graf, R., Boo, G., Guscetti, F., Hässig, M., Axhausen, K. W., Fabrikant, S., Welle, M., Meier, D., Folkers, G., & Pospischil, A. (2016). Swiss canine cancer registry 1955–2008: Occurrence of the most common tumour diagnoses and influence of age, breed, body size, sex and neutering status on tumour development. Journal of Comparative Pathology, 155(2–3), 156–170.

Gurgul, A., Żukowski, K., Ślaska, B., Semik, E., Pawlina, K., Ząbek, T., Jasielczuk, I., & Bugno-Poniewierska, M. (2014). General assessment of copy number variation in normal and tumor tissues of the domestic dog (Canis lupus fami­liaris). Journal of Applied Genetics, 55(3), 353–363.

Hawai, S. M., Al-Zayer, M., Ali, M. M., Niu, Y., Alawad, A., Aljofan, M., Aljarbou, A., & Altuwaijri, S. (2013). Dogs: Active role model for cancer studies – a review. Journal of Cancer Therapy, 4, 989–995.

Hong, I. S., Lee, H. Y., & Kang, K. S. (2014). Mesenchymal stem cells and cancer: Friends or enemies? Mutation Research, 768, 98–106.

Hsu, W. L., Huang, Y. H., Chang, T. J., Wong, M. L., & Chang, S. C. (2010). Single nucleotide variation in exon 11 of canine BRCA2 in healthy and cancerous mammary tissue. Veterinary Journal, 184(3), 351–356.

Irac, S. E., Oksa, A., Jackson, K., Herndon, A., Allavena, R., & Palmieri, C. (2019). Cytokine expression in canine lymphoma, osteosarcoma, mammary gland tumour and melanoma: Comparative aspects. Research in Veterinary Science, 6(2), e37.

Kabir, F. M. L., DeInnocentes, P., Agarwal, P., Mill, C. P., Riese, D. J., & Bird, R. C. (2017). Estrogen receptor-α, progesterone receptor, and c-erbB/HER-family receptor mRNA detection and phenotype analysis in spontaneous canine models of breast cancer. Journal of Veterinary Science, 18(2), 149–158.

Kaszak, I., Ruszczak, A., Kanafa, S., Kacprzak, K., Król, M., & Jurka, P. (2018). Current biomarkers of canine mammary tumors. Acta Veterinaria Scandinavica, 60, 66.

Kawanishi, S., Ohnishi, S., Ma, N., Hiraku, Y., & Murata, M. (2017). Crosstalk bet­ween DNA damage and inflammation in the multiple steps of carcinogenesis. International Journal of Molecular Sciences, 18(8), e1808.

Kim, J. H., Yu, C. H., Yhee, J. Y., Im, K. S., & Sur, J. H. (2010). Lymphocyte infiltration, expression of interleukin (IL)-1, IL-6 and expression of mutated breast cancer susceptibility gene-1 correlate with malignancy of canine mammary tumours. Journal of Comparative Pathology, 142(2–3), 177–186.

Kim, N. H., Lim, H. Y., Im, K. S., Shin, J. I., Kim, H. W., & Sur, J. H. (2014). Evalu­ation of clinicopathological characteristics and oestrogen receptor gene expression in oestrogen receptor-negative, progesterone receptor-positive canine mam­mary carcinomas. Journal of Comparative Pathology, 151(1), 42–50.

Klopfleisch, R., Klose, P., Weise, C., Bondzio, A., Multhaup, G., Einspanier, R., & Gruber, A. D. (2010). Proteome of metastatic canine mammary carcinomas: Similarities to and differences from human breast cancer. Journal of Proteome Research, 9(12), 6380–6391.

Klopfleisch, R., Schütze, M., & Gruber, A. D. (2010). Downregulation of transfor­ming growth factor β (TGFβ) and latent TGFβ binding protein (LTBP)-4 expression in late stage canine mammary tumours. Veterinary Journal, 186(3), 379–384.

Klopp, A. H., Gupta, A., Spaeth, E., Andreeff, M., & Marini, F. (2011). Concise review: Dissecting a discrepancy in the literature: Do mesenchymal stem cells support or suppress tumor growth? Stem Cells, 29(1), 11–19.

Klosova, X. G., Bushueva, I. V., Parchenko, V. V., Shcherbyna, R. O., Samura, T. О., Gubenko, I. Y., Gutyj, B. V., & Khariv, I. I. (2019). Trifuzol suppositories usage results on the course of endometrial inflammatory processes in cows. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 10(1), 1215–1223.

Korkaya, H., Paulson, A., Iovino, F., & Wicha, M. S. (2008). HER2 regulates the mammary stem/progenitor cell population driving tumorigenesis and invasion. Oncogene, 27, 6120–6130.

Kresovich, J. K., Erdal, S., Chen, H. Y., Gann, P. H., Argos, M., & Rauscher, G. H. (2019). Metallic air pollutants and breast cancer heterogeneity. Environmental Research, 177, e108639.

Kulesz-Martin, M., Ouyang, X., Barling, A., Gallegos, J. R., Liu, Y., & Medler, T. (2018). Multistage carcinogenesis: Cell and animal models. Comprehensive Toxicology, 14, 11–33.

Lequarré, A. S., Andersson, L., André, C., Fredholm, M., Hitte, C., Leeb, T., Lohi, H., Lindblad-Toh, K., & Georges, M. (2011). LUPA: A European initiative taking advantage of the canine genome architecture for unravelling complex disorders in both human and dogs. Veterynary Journal, 189(2), 155–159.

Litterine-Kaufman, J., Casale, S. A., & Mouser, P. J. (2019). Prevalence of malignancy in masses from the mammary gland region of dogs with single or multiple masses. Journal of the American Veterinary Medical Association, 255(7), 817–820.

Liu, D., Xiong, H., Ellis, A. E., Northrup, N. C., Rodriguez, C. O., O'Regan, R. M., Dalton, S., & Zhao, S. (2014). Molecular homology and difference between spontaneous canine mammary cancer and human breast cancer. Cancer Research, 74(18), 5045–5056.

Lu, J., Tan, M., & Cai, Q. (2014). The Warburg effect in tumor progression: Mito­chondrial oxidative metabolism as an anti-metastasis mechanism. Cancer Letters, 356, 156–164.

Lutful Kabir, F. M., Alvarez, C. E., & Bird, R. C. (2015). Canine mammary carcinomas: A comparative analysis of altered gene expression. Journal of Veterinary Science, 3(1), e1.

Lutful Kabir, F. M., DeInnocentes, P., & Bird, R. C. (2015). Altered microRNA expression profiles and regulation of INK4A/CDKN2A tumor suppressor genes in canine breast cancer models. Journal of Cellular Biochemistry, 116(12), 2956–2969.

Machado, V. S., Crivellenti, L. Z., Bottari, N. B., Tonin, A. A., Pelinson, L. P., Borin-Crivellenti, S., Santana, A. E., Torbitz, V. D., Moresco, R. N., Duarte, T., Duar­te, M. M., Schetinger, M. R., Morsch, V. M., Jaques, J. A., Tinucci-Costa, M., & Da Silva, A. S. (2015). Oxidative stress and inflammatory response biomarkers in dogs with mammary carcinoma. Pathology – Research and Practice, 211(9), 677–681.

Matos, A. J., & Santos, A. A. (2015). Advances in the understanding of the clinically relevant genetic pathways and molecular aspects of canine mammary tumours: Part 1. Proliferation, apoptosis and DNA repair. Veterinary Journal, 205(2), 136–143.

Merlo, D. F., Rossi, L., Pellegrino, C., Ceppi, M., Cardellino, U., Capurro, C., Ratto, A., Sambucco, P. L., Sestito, V., Tanara, G., & Bocchini, V. (2008). Cancer incidence in pet dogs: Findings of the animal tumor registry of Genoa, Italy. Journal of Veterinary Internal Medicine, 22(4), 976–984.

Michel, E., Rohrer Bley, C., Kowalewski, M. P., Feldmann, S. K., & Reichler, I. M. (2014). Prolactin to be reconsidered in canine mammary tumourigenesis? Vete­rinary Comparative Oncology, 12(2), 93–105.

Millanta, F., Caneschi, V., Ressel, L., Citi, S., & Poli, A. (2010). Expression of vascular endothelial growth factor in canine inflammatory and non-inflammatory mammary carcinoma. Journal of Comparative Pathology, 142(1), 36–42.

Moghbeli, M. (2019). Genetic and molecular biology of breast cancer among Iranian patients. Journal of Translational Medicine, 17, 218.

Mohr, A., Lüder Ripoli, F., Hammer, S. C., Willenbrock, S., Hewicker-Trautwein, M., Kiełbowicz, Z., Murua Escobar, H., & Nolte, I. (2016). Hormone receptor expression analyses in neoplastic and non-neoplastic canine mammary tissue by a bead based multiplex branched DNA assay: A gene expression study in fresh frozen and formalin-fixed, paraffin-embedded samples. PLoS One, 11(9), e0163311.

Morris, J. S., Dobson, J. M., Bostock, D. E., & O'Farrell, E. (1998). Effect of ovariohysterectomy in bitches with mammary neoplasms. Veterinary Record, 142(24), 656–658.

Murata, M. (2018). Inflammation and cancer. Environmental Health and Preventive Medicine, 23(1), 50.

Muto, T., Wakui, S., Takahashi, H., Maekawa, S., Masaoka, T., Ushigome, S., & Furusato, M. (2000). P53 gene mutations occurring in spontaneous benign and malignant mammary tumors of the dog. Veterinary Pathology, 37(3), 248–253.

Mysak, A., Kiełbowicz, Z., Khomyn, N., Pritsak, V., & Gutyj, B. (2018). Graphically x-ray and ultrasound diagnostics for monitnoring neoplasia of the mammary gland in bitches. Ukrainian Journal of Ecology, 8(1), 386–393.

Nguyen, F., Peña, L., Ibisch, C., Loussouarn, D., Gama, A., Rieder, N., Belousov, A., Campone, M., & Abadie, J. (2018). Canine invasive mammary carcinomas as models of human breast cancer. Part 1: Natural history and prognostic factors. Breast Cancer Research and Treatment, 167(3), 635–648.

Nicholas, T. J., Baker, C., Eichler, E. E., & Akey, J. M. (2011). A high-resolution integrated map of copy number polymorphisms within and between breeds of the modern domesticated dog. BMC Genomics, 12, 414.

Nunes, F. C., Damasceno, K. A., de Campos, C. B., Bertagnolli, A. C., Lavalle, G. E., & Cassali, G. D. (2019). Mixed tumors of the canine mammary glands: Evaluation of prognostic factors, treatment, and overall survival. Veterinary and Animal Science, 7, e100039.

O’Day, E., & Lal, A. (2010). MicroRNAs and their target gene networks in breast cancer. Breast Cancer Research, 12(2), 201.

Panchkhande, N., Dewangan, R., Kalim, M. O., Sharda, R., Ratre, H. K., Sahu, D., Sidar, S., & Yadav, S. K. (2019). Incidence of mammary tumour and venereal granuloma in canine in durg District Chhattisgarh. International Journal of Current Microbiology, 8(4), 2368–2381.

Pang, L. Y., Cervantes-Arias, A., Else, R. W., & Argyle, D. J. (2011). Canine mam­mary cancer stem cells are radio- and chemo-resistant and exhibit an epithelial-mesenchymal transition phenotype. Cancers, 3(2), 1744–1762.

Pawłowski, K. M., Mucha, J., Majchrzak, K., Motyl, T., & Król, M. (2013). Ex­pression and role of PGP, BCRP, MRP1 and MRP3 in multidrug resistance of canine mammary cancer cells. BMC Veterinary Research, 9, 119.

Pinho, S. S., Carvalho, S., Cabral, J., Reis, C. A., & Gärtner, F. (2012). Canine tumors: A spontaneous animal model of human carcinogenesis. Translational Research, 159(3), 165–172.

Planellas, M., Bassols, A., Siracusa, C., Saco, Y., Giménez, M., Pato, R., & Pastor, J. (2009). Evaluation of serum haptoglobin and C-reactive protein in dogs with mammary tumors. Veterinary Clinical Pathology, 38(3), 348–352.

Queiroga, F. L., Pires, I., Parente, M., Gregório, H., & Lopes, C. S. (2011). COX-2 over-expression correlates with VEGF and tumour angiogenesis in canine mammary cancer. Veterinary Journal, 189(1), 77–82.

Ranji, P., Salmani Kesejini, T., Saeedikhoo, S., & Alizadeh, A. M. (2016). Targeting cancer stem cell-specific markers and/or associated signaling pathways for over­coming cancer drug resistance. Tumor Biology, 37(10), 13059–13075.

Raposo, T. P., Arias-Pulido, H., Chaher, N., Fiering, S. N., Argyle, D. J., Prada, J., Pires, I., & Queiroga, F. L. (2017). Comparative aspects of canine and human inflammatory breast cancer. Seminars in Oncology, 44(4), 288–300.

Rathore, K., & Cekanova, M. (2015). Effects of environmental carcinogen benzo(a)pyrene on canine adipose-derived mesenchymal stem cells. Research in Veterinary Science, 103, 34–43.

Reimann-Berg, N., Bullerdiek, J., Murua Escobar, H., & Nolte, I. (2012). Chromosome analyses in dogs. Tierärztliche Praxis Kleintiere/Heimtiere, 40(3), 191–196.

Rivera, P., & von Euler, H. (2011). Molecular biological aspects on canine and human mammary tumors. Veterinary Pathology, 48(1), 132–146.

Rivera, P., Melin, M., Biagi, T., Fall, T., Häggström, J., Lindblad-Toh, K., & von Euler, H. (2009). Mammary tumor development in dogs is associated with BRCA1 and BRCA2. Cancer Research, 69(22), 8770–8774.

Rodgers, K. M., Udesky, J. O., Rudel, R. A., & Brody, J. G. (2018). Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. Environmental Research, 160, 152–182.

Rodriguez, D., Ramkairsingh, M., Lin, X., Kapoor, A., Major, P., & Tang, D. (2019). The central contributions of breast cancer stem cells in developing resistance to endocrine therapy in estrogen receptor (ER)-positive breast cancer. Cancers, 11(7), e1028.

Roy, D., Palangat, M., Chen, C. W., Thomas, R. D., Colerangle, J., Atkinson, A., & Yan, Z.-J. (1997). Biochemical and molecular changes at the cellular level in response to exposure to environmental estrogen-like chemicals. Journal of Toxicology and Environmental Health Part A, 50(1), 1–30.

Rybicka, A., & Król, M. (2016). Identification and characterization of cancer stem cells in canine mammary tumors. Acta Veterinaria Scandinavica, 58(1), 86.

Rybicka, A., Mucha, J., Majchrzak, K., Taciak, B., Hellmen, E., Motyl, T., & Krol, M. (2015). Analysis of microRNA expression in canine mammary cancer stem-like cells indicates epigenetic regulation of transforming growth factor-beta signaling. Journal of Physiology and Pharmacology, 66(1), 29–37.

Saeki, K., Endo, Y., Uchida, K., Nishimura, R., Sasaki, N., & Nakagawa, T. (2011). Significance of tumor-infiltrating immune cells in spontaneous canine mammary gland tumor: 140 cases. Journal of Veterinary Medical Science, 74(2), 227–230.

Sahabi, K., Selvarajah, G. T., Abdullah, R., Cheah, Y. K., & Tan, G. C. (2018). Comparative aspects of microRNA expression in canine and human cancers. Journal of Veterinary Science, 19(2), 162–171.

Salas, Y., Márquez, A., Diaz, D., & Romero, L. (2015). Epidemiological study of mammary tumors in female dogs diagnosed during the period 2002–2012: A growing animal health problem. PLoS One, 10(5), e0127381.

Salomão, R. L., Crivellenti, L. Z., Simões, A. P. R., Brito, M. B. S., Silva, P. E. S., Costa, P. B., Tinucci-Costa, M., Santana, A. E., & Borin-Crivellenti, S. (2018). Evaluation of serum concentrations of cortisol and thyroxine in bitches with early-stage mammary carcinoma. Pesquisa Veterinária Brasileira, 38(10), 1949–1954.

Sassi, F., Benazzi, C., Castellani, G., & Sarli, G. (2010). Molecular-based tumour subtypes of canine mammary carcinomas assessed by immunohistochemistry. BMC Veterinary Research, 6, 5.

Schiffman, J. D., & Breen, M. (2015). Comparative oncology: What dogs and other species can teach us about humans with cancer. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1673), e20140231.

Sévère, S., Marchand, P., Guiffard, I., Morio, F., Venisseau, A., Veyrand, B., Le Bizec, B., Antignac, J.-P., & Abadie, J. (2015). Pollutants in pet dogs: A mo­del for environmental links to breast cancer. SpringerPlus, 4, 27.

Shoshan, M. (2017). On mitochondrial metabolism in tumor biology. Current Opinion in Oncology, 29(1), 48–54.

Simões, B. M., Alferez, D. G., Howell, S. J., & Clarke, R. B. (2015). The role of steroid hormones in breast cancer stem cells. Endocrine-Related Cancer, 22(6), 177–186.

Sullivan, R., & Graham, C. H. (2007). Hypoxia-driven selection of the metastatic phenotype. Cancer Metastasis Reviews, 26(2), 319–331.

Surdyka, M., Gurgul, A., Slaska, B., Pawlina, K., Szmatola, T., Bugno-Poniewier­ska, M., Smiech, A., & Kasperek, K. (2019). Characterisation of genome-wide structural aberrations in canine mammary tumours using single nucleotide polymorphism (SNP) genotyping assay. Polish Journal of Veterinary Sciences, 22(1), 133–141.

Tecles, F., Caldín, M., Zanella, A., Membiela, F., Tvarijonaviciute, A., Subiela, S. M., & Cerón, J. J. (2009). Serum acute phase protein concentrations in female dogs with mammary tumors. Journal of Veterinary Diagnostic Investigation, 21(2), 214–219.

Teitelbaum, S. L., Belpoggi, F., & Reinlib, L. (2015). Advancing research on en­docrine disrupting chemicals in breast cancer: Expert panel recommendations. Reproductive Toxicology, 54, 141–147.

Thompson, P. A., Khatami, M., Baglole, C. J., Sun, J., Harris, S. A., Moon, E.-Y., Al-Mulla, F., Al-Temaimi, R., Brown, D. G., Colacci, A. M., Mondello, C., Raju, J., Ryan E. P., Woodrick, J., Scovassi, A. I., Singh, N., Vaccari, M., Roy, R., Forte, S., Memeo, L., Salem, H. K., Amedei, A., Hamid, R. A., Lowe, L., Guarnieri, T., & Bisson, W. H. (2015). Environmental immune disruptors, inflammation and cancer risk. Carcinogenesis, 36(1), 232–253.

Ujvari, B., Klaassen, M., Raven, N., Russell, T., Vittecoq, M., Hamede, R., Thomas, F., & Madsen, T. (2018). Genetic diversity, inbreeding and cancer. Proceedings of the Royal Society B: Biological Sciences, 285, e1875.

Valkenburg, K. C., de Groot, A. E., & Pienta, K. J. (2018). Targeting the tumour stroma to improve cancer therapy. Nature Reviews Clinical Oncology, 15(6), 366–381.

Varallo, G. R., Jardim-Perassi, B. V., Alexandre, P. A., Fukumasu, H., & Zuccari, D. A. P. C. (2019). Global gene expression profile in canine mammary carcinomas. Veterinary Journal, 254, e105393.

Vascellari, M., Capello, K., Carminato, A., Zanardello, C., Baioni, E., & Mutinelli, F. (2016). Incidence of mammary tumors in the canine population living in the Veneto region (Northeastern Italy): Risk factors and similarities to human breast cancer. Preventive Veterinary Medicine, 126, 183–189.

Waters, D. J., Kengeri, S. S., Maras, A. H., Suckow, C. L., & Chiang, E. C. (2017). Life course analysis of the impact of mammary cancer and pyometra on age-anchored life expectancy in female Rottweilers: Implications for envisioning ovary conservation as a strategy to promote healthy longevity in pet dogs. Vete­rinary Journal, 224, 25–37.

White, A. J., O’Brien, K. M., Niehoff, N. M., Carroll, R., & Sandler, D. P. (2019). Metallic air pollutants and breast cancer risk in a nationwide cohort study. Epidemiology, 30(1), 20–28.

Xu, S., Xu, H., Wang, W., Li, S., Li, H., Li, T., Zhang, W., Yu, X., & Liu, L. (2019). The role of collagen in cancer: From bench to bedside. Journal of Translational Medicine, 17(1), 309.

Yamagami, T., Kobayashi, T., Takahashi, K., & Sugiyama, M. (1996). Prognosis for canine malignant mammary tumors based on TNM and histologic classification. Journal of Veterinary Medical, 58(11), 1079–1083.

Published
2020-03-05
How to Cite
Bilyi, D. D., GerdevaA. А., Samoiliuk, V. V., Suslova, N. I., & Yevtushenko, I. D. (2020). A modern look at the molecular-biological mechanisms of breast tumours in dogs . Regulatory Mechanisms in Biosystems, 11(1), 3-12. https://doi.org/10.15421/022001