Strains of soil microorganisms promising for the creation of a complex plant protection product against mycoses and harmful insects

  • O. A. Drehval Oles Honchar Dnipro National University
  • A. A. Dreus Oles Honchar Dnipro National University
  • N. V. Cherevach Oles Honchar Dnipro National University
  • T. V. Sklyar Oles Honchar Dnipro National University
Keywords: antifungal action; Bacillus sp.; biocontrol; plant diseases; phytotoxicity; insecticidal activity

Abstract

We evaluated the antagonistic activity of 23 strains of Bacillus spр. against phytopathogenic fungi Fusarium oxysporum, F. culmorum, F. moniliforme, Cladosporium herbarum, Alternaria alternata and Aspergillus niger. The antagonistic activity was tested by agar diffusion (the method of blocks). For determining the influence of bacteria on barley plants , ardent seeds were treated by cultural liquid (dilution 1 : 10) for 2 hours and germinated in Petri dishes on moist filter paper. The fungistatic effect of Bacillus sрp. separately and in combination with entomopathogens (in equal ratio) was determined by the level of inhibition of the fungi Fusarium spp. on a solid nutrient medium with 5% of the culture liquid. Insecticidal activity of microorganisms was determined in the model experiments by the percentage of death of the caterpillar Archips podana Scop. Strains of Bacillus sp. KMB-3 and Bacillus sp. KMB-6 inhibited the growth of all test cultures (zones of growth inhibition 11.4–30.6 and 11.5–29.4 mm, respectively). We established the absence of antagonism between selected strains and entomopathogenic bacteria Bacillus thuringiensis IMB-7186, fungi Beauveria bassiana IMB-F-100043. We found that treatment of barley seeds with culture liquids of Bacillus sp. KMB-3 and Bacillus sp. KMB-6 didn’t have a negative effect on the morphometric indices and dry weight of seedlings. We established that the highest percentage of growth inhibition of F. culmorum IMB-F-50716 was provided by a complex of Bacillus sp. KMB-3, B. bassiana IMB-F-100043 and B. thuringiensis IMB-7186, whose action was at the same level as the action of monoculture Bacillus sp. KMB-3 (85.4% and 84.7%, respectively). The highest percentage inhibition of growth of F. oxysporum ІМВ-F-54201 was provided by a complex of strains of Bacillus sp. KMB-3 and B. bassiana IMB-F-100043, whose effect was slightly inferior to that of the monoculture Bacillus sp. KMB-3 (68.4% and 75.1%, respectively). The insecticidal activity of complexes Bacillus sp. KMB-3, B. bassiana IMB-F-100043, B. thuringiensis IMB-7186 or Bacillus sp. KMB-6, B. bassiana IMB-F-100043, B. thuringiensis IMB-7186 insignificantly differed from that of the complex entomopathogens B. bassiana IMB-F-100043 and B. thuringiensis IMB-7186 (71.1%, 73.3% death versus 80.0%). The selected microbial complexes can be considered as promising for the development of a preparation for the protection of plants against fungal diseases and harmful insects.

References

Arora, N., Sachdev, B., Gupta, R., Vimala, Y., & Bhatnagar, R. K. (2013). Characterization of a chitin-binding protein from Bacillus thuringiensis HD-1. PLOS ONE, 8(6), e66603.


Bodhankar, S., Grover, M., Hemanth, S., Reddy, G., Rasul, S., Yadav, S. K., Desai, S., Mallappa, M., Mandapaka, M., & Srinivasarao, C. (2017). Maize seed endophytic bacteria: Dominance of antagonistic, lytic enzyme-producing Bacillus spp. 3 Biotech, 7(4), 232.


Chen, J. N., Wei, C. W., Liu, H. C., Chen, S. Y., Chen, C., Juang, Y. M., Lai, C. C., & Yiang, G. T. (2016). Extracts containing CLPs of Bacillus amyloliquefaciens JN68 isolated from chicken intestines exert antimicrobial effects, particularly on methicillin-resistant Staphylococcus aureus and Listeria monocytogenes. Molecular Medicine Reports, 14(6), 5155–5163.


De la Fuente-Salcido, N. M., Casados-Vazquez, L. E., Garcia-Perez, A. P., Barboza-Perez, U. E., Bideshi, D. K., Salcedo-Hernandez, R., Garcia- Almendarez, B. E., & Barboza-Corona, J. E. (2016). The endochitinase ChiA Btt of Bacillus thuringiensis subsp. tenebrionis DSM- 2803 and its potential use to control the phytopathogen Colletotrichum gloeosporioides. MicrobiologyOpen, 5(5), 819–829.


Dimkic, I., Stankovic, S., Nisavic, M., Petkovic, M., Ristivojevic, P., Fira, D., & Beric, Т. (2017). The profile and antimicrobial activity of Bacillus lipopeptide extracts of five potential biocontrol strains. Frontiers in Microbiology, 8, 925.


Drehval, O. A., Vlasenko, O. G., Cherevach, N. V., & Vinnikov, А. І (2015). Vplyv mikrobnogo preparatu “Baktofungin-LS” na persykovu popelycju u kontrol'ovanyh umovah [Influence of microbial preparation “Baktofungin-LS” on peach aphid in controlled conditions]. Agroekologichnyj Zhurnal, 4, 85–89 (in Ukrainian).


Egamberdieva, D., Li, L., Lindström, K., & Räsänen, L. A. (2016). A synergistic interaction between salt-tolerant Pseudomonas and Mesorhizobium strains improves growth and symbiotic performance of liquorice (Glycyrrhiza uralensis Fish.) under salt stress. Applied Microbiology and Biotechnology, 100(6), 2829–2841.


Egamberdieva, D., Wirth, S. J., Shurigin, V. V., Hashem, A., & Abd Allah, E. F. (2017). Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Frontiers in Microbiology, 8, 1887.


Hollensteiner, J., Wemheuer, F., Harting, R., Kolarzyk, A. M., Diaz Valerio, S. M., Poehlein, A., Brzuszkiewicz, E. B., Nesemann, K., Braus-Stromeyer, S. A., Braus, G. H., Daniel, R., & Liesegang, H. (2017). Bacillus thuringiensis and Bacillus weihenstephanensis inhibit the growth of phytopathogenic Verticillium species. Frontiers in Microbiology, 7, 2171.


Iutynska, G. O., & Ponomarenko, S. P. (eds.). (2010). Bioreguljacija mikrobno-rastitel'nyh sistem [Bioregulation of microbial-plant systems]. Nichlava, Kiev (in Russian).


Ji, S. H., Paul, N. C., Deng, J. X., Kim, Y. S., Yun, B. S., & Yu, S. H. (2013). Biocontrol activity of Bacillus amyloliquefaciens CNU114001 against fungal plant diseases. Mycobiology, 41(4), 234–242.


Khong, N. G., Randoux, B., Deravel, J., Tisserant, B., Tayeh, Ch., Coutte, F., Bourdon, N., Jacques, P., & Reignault, P. (2013). Induction of resistance in wheat by bacterial cyclic lipopeptides. Communications in Agricultural and Applied Biological Sciences, 78(3), 479–487.


Meena, K. R., & Kanwar, S. S. (2015). Lipopeptides as the antifungal and antibacterial agents: Applications in food safety and therapeutics. BioMed Research International, 2015, 473050.


Molinatto, G., Franzil, L., Steels, S., Puopolo, G., Pertot, I., & Ongena, M. (2017). Key impact of an uncommon plasmid on Bacillus amyloliquefaciens subsp. plantarum S499 developmental traits and lipopeptide production. Frontiers in Microbiology, 8, 17.


Naureen, Z., Rehman, N. U., Hussain, H., Hussain, J., Gilani, S. A., Al Housni, S. K., Mabood, F., Khan, A. L., Farooq, S., Abbas, G., & Harrasi, A. A. (2017). Exploring the potentials of Lysinibacillus sphaericus ZA9 for plant growth promotion and biocontrol activities against phytopathogenic fungi. Frontiers in Microbiology, 8, 1477.


Patyka, T. I., Bojko, M. V., & Patyka, M. V. (2017). Biotehnologichna polifunkcional'nist' metabolitnogo sporo-krystalichnogo kompleksu ta osoblyvosti kul'tyvuvannja Bacillus thuringiensis [Biotechnological polyfunctionality of the metabolic spore-crystalline complex and Bacillus thuringiensis cultivation features]. Mikrobiologichnyj Zhurnal, 79(2), 78–85 (in Ukrainian).


Rishad, K. S., Rebello, S., Shabanamol, P. S., & Jisha, M. S. (2017). Biocontrol potential of halotolerant bacterial chitinase from high yielding novel Bacillus pumilus MCB-7 autochthonous to mangrove ecosystem. Pesticide Biochemistry and Physiology, 137, 36–41.


Shahid, A. A., Rau, A. Q., Bakhsh, A., & Husnain, T. (2012). Entomopathogenic fungi as biological controllers: New insights into their virulence and pathogenicity. Archives of Biological Sciences, 64(1), 21–42.


Srivastava, R., Khalid, A., Singh, U. S., & Sharma, A. K. (2010). Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biological Control, 53(1), 24–31.


Yamammoto, S., Shiraishi, S., & Suzuki, S. (2015). Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13-3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Letters in Applied Microbiology, 60(4), 379–386.

Published
2018-02-26
How to Cite
Drehval, O. A., Dreus, A. A., Cherevach, N. V., & Sklyar, T. V. (2018). Strains of soil microorganisms promising for the creation of a complex plant protection product against mycoses and harmful insects. Regulatory Mechanisms in Biosystems, 9(1), 69-74. https://doi.org/10.15421/021809