Resistance of nosocomial strains to antibacterial drugs and its link to biofilm formation

  • T. V. Sklyar Oles Honchar Dnipro National University
  • K. V. Lavrentievа Oles Honchar Dnipro National University
  • Y. A. Alyonkina Oles Honchar Dnipro National University
  • A. M. Kolomoets Oles Honchar Dnipro National University
  • А. І. Vinnikov Oles Honchar Dnipro National University
Keywords: antibiotics, disinfectants, biofilm, Pseudomonas aeruginosa, Staphylococcus aureus

Abstract

The problem of nosocomial infections is considered in connection with more frequent formation and wide distribution in clinical practice of new strains of hospital bacteria that have a cross-resistence to antibacterial drugs. The nosocomial agents were isolated from wounds and identified as Staphylococcus aureus and Pseudomonas aeruginosa. 72.0% of S. aureus strains and 61.5% of P. aeruginosa clinical isolates had the capability of forming biofilms. The sensitivity to antibiotics of all isolated strains was investigated with tne agar diffusion test. This method showed that all strains of S. aureus with the capability to form biofilms had resistence to erythromycin, gentamycin, ciprofloxacin and levofloxacin. The had the greatest sensitivity to klindamycin (90.3%), vancomycin (80.6%) and gatifloxacin (80.6% cultures). The strains of S. aureus with the capability to form biofilms were more resistent to antibiotics than strains of S. aureus without such properties. Only cefotaxim suppressed the growth of 75.0% of strains of staphylococci. All isolated strains of S. aureus without the capability to form biofilms were sensitive to doxycyclin, gentamycin, ciprofloxacin, levofloxacin and klindamycin. All clinical isolates of P. aeruginosa with capability to form biofilms had resistence to ampicillin, gentamycin, imipenem, cefotaxime and ceftriaxone. They were most sensitive (75.0%) to piperacillin and cefoperazone/sulbactam. The strains of P. aeruginosa without the capability to form biofilms kept the resistence to gentamycin, imipenem and ceftriaxone. They showed the greatest sensitivity (75.0%) to ciprofloxacin (80.0% isolates) and also to amikacin, ampicillin, meropenem, norfloxacin and cefotaxime (60.0% cultures). We investigated the minimum inhibitory concentrations of gentamycin and ciprofloxacin, which appeared higher for P. aeruginosa than for S. aureus. The most effective disinfectant against all isolated nosocomial agents without the capacity for biofilm formation was “Desactin” in a concentration 0.1% or 0.2%. For strains of staphylococci with this capability, the efficiency of “Desactin” went down by 9.7%. The best biocide effect against the strains of P. aeruginosa with the capability of forming biofilms was shown by 0.1% solution of “Neochlorine tabs”, which suppressed the growth of 75.0% of tested cultures. As a result, we detected a direct relationship between resistance to antibiotics and disinfectants and the capacities for biofilm formation among the nosocomial agents S. aureus and P. aeruginosa. 

References

Abdallah, M., Benoliel, C., Drider, D., Dhulster, P., & Chihib, N. E. (2014). Biofilm formation and persistence on abiotic surfaces in the context of food and medical environments. Archives of Microbiology, 196, 453–472.

Ali, Z., Mumtaz, N., Naz, S. A., Jabeen, N., & Shafique, M. (2015). Multi-drug resistant Pseudomonas aeruginosa: A threat of nosocomial infections in tertiary care hospitals. The Journal of the Pakistan Medical Association, 1, 12–16.

Ansari, S., Nepal, H. P., Gautam, R., Rayamajhi, N., Shrestha, S., Upadhyay, G., Acharya, A., & Chapagain, M. L. (2014). Threat of drug resistant Staphylococcus aureus to health in Nepal. BMC Infectious Diseases, 14, 1–5.

Baldan, R., Cigana, C., Testa, F., Bianconi, I., De Simone, M., Pellin, D., Di Serio, C., & Bragonzi, A. (2014). Adaptation of Pseudomonas aeruginosa in cystic fibrosis airways influences virulence of Staphylococcus aureus in vitro and murine models of co-infection. PLoS One, 9(3), e89614.

Belbase, A., Pant, N. D., Nepal, K., Neupane, B., Baidhya, R., Baidya, R., & Lekhak, B. (2017). Antibiotic resistance and biofim production among the strains of Staphylococcus aureus isolated from pus/wound swab samples in a tertiary care hospital in Nepal. Annals of Clinical Microbiology and Antimicrobials, 16, 15.

Bridier, A., Dubois-Brissonnet, F., Greub, G., Thomas, V., & Briandet, R. (2011). Dynamics of the action of biocides in Pseudomonas aeruginosa biofims. Antimicrobial Agents and Chemotherapy, 55, 2648–2654.

Chadha, T. (2014). Bacterial biofilms: Survival mechanisms and antibiotic resistance. Journal of Bacteriology and Parasitology, 5(3).

Chen, K., Huang, Y., Song, Q., Wu, C., Chen, X., & Zeng, L. (2017). Drug-resistance dynamics of Staphylococcus aureus between 2008 and 2014 at a tertiary teaching hospital, Jiangxi Province, China. BMC Infectious Diseases, 17, 97.

Choi, J. Y., Kwak, Y. G., Yoo, H., Lee, S. O., Kim, H. B., Han, S. H., Choi, H. J., Kim, H. Y., Kim, S. R., Kim, T. H., Lee, H., Chun, H. K, Kim, J. S., Eun, B. W., Kim, D. W., Koo, H. S., Cho, E. H., & Lee, K. (2016). Korean Nosocomial Infections Surveillance System. Trends in the distribution and antimicrobial susceptibility of causative pathogens of device-associated infection in Korean intensive care. Journal of Hospital Infections, 92(4), 363–371.

Dasgupta, S., Das, S., Chawan, N. S., & Hazra, A. (2015). Nosocomial infections in the intensive care unit: Incidence, risk factors, outcome and associated pathogens in a public tertiary teaching hospital of Eastern India. Indian Journal of Critical Care Medicine, 19(1), 14–20.

Gill, M. M., Usman, J., Kaleem, F., Hassan, A., Khalid, A., Anjum, R., & Fahim, Q. (2011). Frequency and antibiogram of multi-drug resistant Pseudomonas aeruginosa. Journal of the College of Physicians and Surgeons Pakistan, 21(9), 531–534.

Heydarpour, F., Rahmani, Y., Heydarpour, B., & Asadmobini, A. (2017). Nosocomial infections and antibiotic resistance pattern in open-heart surgery patients at Imam Ali Hospital in Kermanshah, Iran. GMS Hygiene and Infection Control, 12, 1–8.

Iliyasu, G., Daiyab, F. M., Tiamiyu, A. B., Abubakar, S., Zaiya, G. H., Sarki, A. M., & Habib, A. G. (2016). Nosocomial infections and resistance pattern of common bacterial isolates in an intensive care unit of a tertiary hospital in Nigeria: A 4-year review. Journal of Critical Care, 34, 116–120.

Kahsay, A., Mihret, A., Abebe, T., & Andualem, T. (2014). Isolation and antimicrobial susceptibility pattern of Staphylococcus aureus in patients with surgical site infection at Debre Markos Referral Hospital, Amhara Region, Ethiopia. Archives of Public Health, 72, 16.

Khan, H. A., Ahmad, A., & Mehboob, R. (2015). Nosocomial infections and their control strategies. Asian Pacific Journal of Tropical Biomedicine, 5(7), 509–514.

Kim, S., Lieberman, T. D., & Kishony, R. (2014). Alternating antibiotic treatments constrain evolutionary paths to multidrug resistance. Proceedings of the National Academy of Sciences of the United States of America, 111(40), 14494–14499.

Magiorakos, A.-P., Srinivasan, A., Carey, R. B., Carmeli, Y., Falagas, M. E., Giske, C. G., Harbarth, S., Hindler, J. F., Kahlmeter, G., Olsson-Liljequist, B., Paterson, D. L., Rice, L. B., Stelling, J., Struelens, M. J., Vatopoulos, A., Weber, J. T., & Monnet, D. L. (2012). Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clinical Microbiology and Infection, 18(3), 268–281.

Manyahi, J., Matee, M. I., Majigo, M., Moyo, S., Mshana, S. E., & Lyamuya, E. F. (2014). Predominance of multi-drug resistant bacterial pathogens causing surgical site infections in Muhimbili National Hospital, Tanzania. BMC Research Notes, 7, 500.

Menegueti, M. G., Canini, S. R. M. da S., Bellissimo-Rodrigues, F., & Laus, A. M. (2015). Evaluation of nosocomial infection control programs in health services. Revista Latino-Americana de Enfermagem, 1, 98–105.

Murphy, R. A., Okoli, О., Essien, I., & Teicher, C. (2016). Multidrug-resistant surgical site infections in a humanitarian surgery project. Epidemiology Adn Infection, 144(16), 3520–3526.

Nathwani, D., Raman, G., Sulham, K., Gavaghan, M., & Menon, V. (2014). Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: A systematic review and meta-analysis. Antimicrobial Resistance and Infection Control, 3, 32.

Negi, V., Pal, S., Juval, D., Sharma, M. K., & Sharma, N. (2015). Bacteriological profie of surgical site infections and their antibiogram: A study from resource constrained rural setting of Uttarakhand State. India Journal of Clinical and Diagnostic Research, 9(10), 17–20.

O’Toole, G. F., Kaplan, H. B., & Kolter, R. (2000). Biofilm formation as microbial development. Annual Review of Microbiology, 54, 49–79.

Ramirez-Blanco, C. E., Ramirez-Rivero, C. E., Diaz-Martinez, L. A., & Sosa-Avila, L. M. (2017). Infection in burn patients in a referral center in Colombia. Burns, in press.

Rezai, M. S., Bagheri-Nesami, M., & Nikkhah, A. (2017). Catheter-related urinary nosocomial infections in intensive care units: An epidemiologic study in North of Iran. Caspian Journal of Internal Medicine, 8(2), 76–82.

Scherbaum, M., Kösters, K., Mürbeth, R. E., Ngoa, U. A., Kremsner, P. G., Lell, B., & Alabi, A. (2014). Incidence, pathogens and resistance patterns of nosocomial infections at a rural hospital in Gabon. BMC Infectious Diseases, 14, 124.

Singh, S., Malhotra, R., Grover, P., Bansal, R., Kaur, R., & Jindal, N. (2017). Antimicrobial resistance profile of methicillin-resistant Staphylococcus aureus colonizing the anterior nares of health-care workers and outpatients attending the remotely located tertiary care hospital of North India, 9(4), 317–321.

Singh, S., Singh, S. K., Chowdhury, I., & Singh, R. (2017). Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. The Open Microbiology Journal, 11, 53–62.

Sonmezer, M. C., Ertem, G., Erdincm, F. S., Kilic, E. K., Tulek, N., Adiloglu, A., & Hatipoglu, C. (2016). Evaluation of risk factors for antibiotic resistance in patients with nosocomial infections caused by Pseudomonas aeruginosa. Canadian Journal of Infectious Diseases and Medical Microbiology, 2.

Sowash, M. G., & Uhlemann, A. C. (2014). Community-associated methicillin-resistant Staphylococcus aureus case studies. Methods of Molecular Biology, 1085, 25–69.

Tong, S. Y., Davis, J. S., Eichenberger, E., Holland, T. L., & Fowler, V. G. J. (2015). Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clinical Microbiology Reviews, 28(3), 603–661.

Vuong, C., Yeh, A., Cheung, G., & Otto, M. (2016). Investigational drugs to treat methicillin-resistant Staphylococcus aureus. Expert Opinion on Investigational Drugs, 25(1), 73–93.

Wang, L., & Ruan, S. (2017). Modeling nosocomial infections of methicillin-resistant Staphylococcus aureus with environment contamination. Scientific Reports, 7, 1–12.

Published
2017-11-16
How to Cite
Sklyar, T. V., LavrentievаK. V., Alyonkina, Y. A., Kolomoets, A. M., & VinnikovА. І. (2017). Resistance of nosocomial strains to antibacterial drugs and its link to biofilm formation. Regulatory Mechanisms in Biosystems, 8(4), 540–546. https://doi.org/10.15421/021783