GC-MS analysis of cuticular waxes and evaluation of antioxidant and antimicrobial activity of Chaenomeles cathayensis and Ch. × californica fruits

  • Y. V. Lykholat Oles Honchar Dnipro National University
  • N. O. Khromykh Oles Honchar Dnipro National University
  • O. O. Didur Oles Honchar Dnipro National University
  • T. V. Sklyar Oles Honchar Dnipro National University
  • T. A. Holubieva National University of Life and Environmental Sciences of Ukraine
  • T. Y. Lykholat Oles Honchar Dnipro National University
  • K. V. Lavrentievа Oles Honchar Dnipro National University
  • O. V. Liashenko Oles Honchar Dnipro National University
Keywords: Chaenomeles fruits; phenolic compounds; cuticular waxes; antimicrobial activity


Fruit extracts of the Chaenomeles species are a rich source of compounds having health-promoting properties, while their distribution between the species and cultivars varies significantly depending on both genotype and environmental threats. This study aimed at discovering antioxidant and antimicrobial potential of the secondary metabolites of fruit and waxes of fruit cuticular of introduced Ch. cathayensis and Ch. × californica plants. The sum of detected polyphenols in the isopropanolic fruit extracts varied slightly between the species, while significant excesses in indices were seen for both species peel extracts as compared to pulp extracts. Antimicrobial assays carried out by disc diffusion method showed notable activity of the fruit peel and pulp extracts of both species against all tested Gram-negative and Gram-positive bacterial strains, and two Candida strains as well. Pseudomonas aeruginosa strain was the most resistant to the action of both fruit extracts, especially peel extracts of Ch. cathayensis fruits. As identified by gas chromatography-mass spectrometry (GC-MS) assays, chloroformic extracts from the fruits of cuticular waxes of Ch. cathayensis and Ch. × californica contained six prevailing fractions: aldehydes, alkanes, alcohols, esters, fatty acids and various terpenoids. The predominant compounds were tetrapentacontane (21.8% of total amount) and heptacosanal (23.1% of total), respectively in the cuticular waxes of Ch. cathayensis and Ch. × californica. Cinnamaldehyde, cis-9-hexadecenal, hexadecanoic acid, oleic acid, olean-12-ene-3,28-diol (3. beta), lupeol, diisooctyl phthalate, 9-octadecenoic acid, 1,2,3-propanetriyl ester, 1,3,12-nonadecatriene-5,14-diol and some other identified compounds are well-known for their bioactivity, indicating the feasibility of studying the antimicrobial potential of plant fruits.


Ashakirin, S. N., Tripathy, M., Patil, U. K., & Majeed, A. B. A. (2017). Chemistry and bioactivity of cinnamaldehyde: A natural molecule of medicinal importance. International Journal of Pharmaceutical Sciences and Research, 8(6), 2333–2340.

Baranowska-Bosiacka, I., Bosiacka, B., Rast, J., Gutowska, I., Wolska, J., Rębacz-Maron, E., Dębia, K., Janda, K., Korbecki, J., & Chlubek, D. (2017). Macro- and microelement content and other properties of Chaenomeles japonica L. fruit and protective effects of its aqueous extract on hepatocyte metabolism. Biological Trace Element Research, 178, 327–337.

Begum, I. F., Mohankumar, R., Jeevan, M., & Ramani, K. (2016). GC-MS analysis of bio-active molecules derived from Paracoccus pantotrophus FMR19 and the antimicrobial activity against bacterial pathogens and MDROs. Indian Journal of Microbiology, 56(4), 426–432.

Bhimba, B. V., Pushpam, A. C., Arumugam, P., & Prakash, S. (2012). Phthalate derivatives from the marine fungi Phoma herbarum VB7. International Journal of Biological and Pharmaceutical Research, 3(4), 507–512.

Buschhaus, C., Herz, H., & Jetter, R. (2007). Chemical composition of the epicuticular and intracuticular wax layers on adaxial sides of Rosa canina leaves. Annals of Botany, 100(6), 1557–1564.

Catteau, L., Zhu, L., Van Bambeke, F., & Quetin-Leclercq, J. (2018). Natural and hemi-synthetic pentacyclic triterpenes as antimicrobials and resistance modifying agents against Staphylococcus aureus: A review. Phytochemistry Reviews, 17, 1129–1163.

Diab, T. A., Donia, T., & Saad-Allah, K. M. (2021). Characterization, antioxidant, and cytotoxic effects of some Egyptian wild plant extracts. Beni-Suef University Journal of Basic and Applied Sciences, 10, 13.

Do Nascimento, P. G. G., Lemos, T. L. G., Bizerra, A. M. C., Arriaga, Â. M. C., Ferreira, D. A., Santiago, G. M. P., Braz-Filho, R., & Costa, J. G. M. (2014). Antibacterial and antioxidant activities of ursolic acid and derivatives. Molecules, 19(1), 1317–1327.

Du, H., Wu, J., Li, H., Zhong, P. X., Xu, Y. J., Li, C. H., Ji, K. X., & Wang, L. S. (2013). Polyphenols and triterpenes from Chaenomeles fruits: Chemical analysis and antioxidant activities assessment. Food Chemistry, 141, 4260–4268.

Gawron-Gzella, A., Dudek-Makuch, M., & Matlawska, I. (2012). DPPH radical scavenging activity and phenolic compound content in different leaf extracts from selected blackberry species. Acta Biologica Cracoviensia, Series Botanica, 54(2), 32–38.

Gorlach, S., Wagner, W., Podsędek, A., Szewczyk, K., Koziołkiewicz, M., & Dastych, J. (2011). Procyanidins from japanese quince (Chaenomeles japonica) Fruit induce apoptosis in human colon cancer caco-2 cells in a degree of polymerization-dependent manner. Nutrition and Cancer, 63(8), 1348–1360.

Han, Y.-K., Kim, Y.-S., Natarajan, S. B., Kim, W.-S., Hwang, J.-W., Jeon, N.-J., Jeong, J.-H., Moon, S.-H., Jeon, B.-T., & Park, P.-J. (2016). Antioxidant and anti-inflammatory effects of Chaenomeles sinensis leaf extracts on LPS-stimulated RAW 264.7 cells. Molecules, 21(4), 422.

Hoda, S., Gupta, L., Shankar, J., Gupta, A. K., & Vijayaraghavan, P. (2020). cis-9-Hexadecenal, a natural compound targeting cell wall organization, critical growth factor, and virulence of Aspergillus fumigatus. ACS Omega, 5(17), 10077–10088.

Khromykh, N., Lykholat, Y., Shupranova, L., Kabar, A., Didur, O., Lykholat, T., & Kulbachko, Y. (2018). Interspecific differences of antioxidant ability of introduced Chaenomeles species with respect to adaptation to the steppe zone conditions. Biosystems Diversity, 26(2), 132–138.

Kuroda, M., Nagasaki, S., & Ohta, T. (2007). Sesquiterpene farnesol inhibits recycling of the C55 lipid carrier of the murein monomer precursor contributing to increased susceptibility to beta-lactams in methicillin-resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy, 59, 425–432.

Lewandowska, U., Szewczyk, K., Owczarek, K., Hrabec, Z., Podsędek, A., Koziołkiewicz, M., & Hrabec, E. (2013). Flavanols from japanese quince (Chaenomeles japonica) fruit inhibit human prostate and breast cancer cell line invasiveness and cause favorable changes in Bax/Bcl-2 mRNA ratio. Nutrition and Cancer, 65(2), 273–285.

Lykholat, Y. V., Khromykh, N. O., Didur, O. O., Davydov, V. R., Sklyar, T. V., Drehval, O. A., Vergolyas, M. R., Verholias, O. O., Marenkov, O. M., Nazarenko, M. M., Lavrentieva, K. V., Kurahina, N. V., Lykholat, O. A., Legostaeva, T. V., Zaytseva, I. O., Kabar, A. M., & Lykholat, T. Y. (2021). Features of the fruit epicuticular waxes of Prunus persica cultivars and hybrids concerning pathogens susceptibility. Ukrainian Journal of Ecology, 11(1), 261–266.

Lykholat, Y. V., Khromykh, N. O., Lykholat, T. Y., Didur, O. O., Lykholat, O. A., Legostaeva, T. V., Kabar, A. M., Sklyar, T. V., Savosko, V. M., Kovalenko, I. M., Davydov, V. R., Bielyk, Y. V., Volyanik, K. O., Onopa, A. V., Dudkina, K. A., & Grygoryuk, I. P. (2019). Industrial characteristics and consumer properties of Chaenomeles Lindl. fruits. Ukrainian Journal of Ecology, 9(3), 132–137.

Lykholat, Y. V., Khromykh, N. O., Pirko, Y. V., Alexeyeva, A. A., Pastukhova, N. L., & Blume, Y. B. (2018). Epicuticular wax composition of leaves of Tilia L. trees as a marker of adaptation to the climatic conditions of the steppe Dnieper. Cytology and Genetics, 52, 323–330.

Ma, B., Wang, J., Tong, J., Zhou, G., Chen, Y., He, J., & Wang, Y. (2016). Protective effects of Chaenomeles thibetica extract against carbon tetrachloride-induced damage via the MAPK/Nrf2 pathway. Food and Function, 7(3), 1492–1500.

Miao, J., Li, X., Zhao, C., Gao, X., Wang, Y., & Gao, W. (2018). Active compounds, antioxidant activity and alpha-glucosidase inhibitory activity of different varieties of Chaenomeles fruits. Food Chemistry, 248, 330–339.

Miao, J., Zhao, C., Li, X., Chen, X., Mao, X., Huang, H., Wang, T., & Gao, W. (2016). Chemical composition and bioactivities of two common Chaenomeles fruits in China: Chaenomeles speciosa and Chaenomeles sinensis. Journal of Food Science, 81, H2049–H2058.

Ololade, Z. C., Essien, E. R., & Agboola, O. O. (2015). Pharmacological potential of the stem extract of Melissa officinalis: Compositional profile, polyphenol, ascorbic acid contents, antioxidant, anti-inflammatory and antimicrobial activities. Bells University Journal of Applied Sciences and Environment, 1(2), 43–52.

Parveen, Z., Mazhar, S., Siddique, S., Manzoor, A., & Ali, Z. (2017). Chemical composition and antifungal activity of essential oil from Xanthium strumarium L. leaves. Indian Journal of Pharmaceutical Sciences, 79(2), 316–321.

Pękal, A., & Pyrzynska, K. (2014). Evaluation of aluminum complexation reaction for flavonoid content assay. Food Analytical Methods, 7, 1776–1782.

Pourakbar, L., Moghaddam, S. S., El Enshasy, H. A., & Sayyed, R. Z. (2021). Antifungal activity of the extract of a macroalgae, Gracilariopsis persica, against four plant pathogenic fungi. Plants, 10(9), 1781.

Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337–341.

Pulido, R., Bravo, R. L., & Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. Journal of Agricultural and Food Chemistry, 48, 3396–3402.

Rumpunen, K. (2002). Chaenomeles: Potential new fruit crop for northern Europe. In: Janick, J., & Whipkey, A. (Eds.). Trends in New Crops and New Uses. ASHS Press, Alexandria. Pp. 385–392.

Shanab, S. M. M., Shalaby, E. A., Lightfoot, D. A., & El-Shemy, H. A. (2010). Allelopathic effects of water hyacinth [Eichhornia crassipes]. PLoS One, 5(10), e13200.

Singleton, V. L., Orthofer, R., & Lamuela-Raventos, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteau reagent. Methods in Enzymology, 299, 152–178.

Suh, W. S., Park, K. J., Kim, D. H., Subedi, L., Kim, S. Y., Choi, S. U., & Lee, K. R. (2017). A biphenyl derivative from the twigs of Chaenomeles speciosa. Bioorganic Chemistry, 72, 156–160.

Trivedi, P., Nguyen, N., Hykkerud, A. L., Häggman, H., Martinussen, I., Jaakola, L., & Karppinen, K. (2019). Developmental and environmental regulation of cuticular wax biosynthesis in fleshy fruits. Frontiers in Plant Science, 10, 431.

Urbanaviciute, I., Liaudanskas, M., Bobinas, C., Šarkinas, A., Rezgiene, A., & Viskelis, P. (2020). Japanese quince (Chaenomeles japonica) as a potential source of phenols: Optimization of the extraction parameters and assessment of antiradical and antimicrobial activities. Foods, 9, 1132.

Walters, D., Raynor, L., Mitchell, A., Walker, R., & Walker, K. (2004). Antifungal activities of four fatty acids against plant pathogenic fungi. Mycopathologia, 157(1), 87–90.

Wang, T., Liu, Y.-Y., Wang, X., Yang, N., Zhu, H.-B., & Zuo, P.-P. (2010). Protective effects of octacosanol on 6-hydroxydopamine-induced parkinsonism in rats via regulation of ProNGF and NGF signaling. Acta Pharmacologica Sinica, 31(7), 765–774.

Xianfei, X., Xiaoqiang, C., Shunying, Z., & Guolin, Z. (2007). Chemical composition and antimicrobial activity of essential oils of Chaenomeles speciosa from China. Food Chemistry, 100(4), 1312–1315.

Yeung, H.-C. (2000). Handbook of Chinese herbs and formulas. Redwing Book Co., Taos.

Zakłos-Szyda, M., & Pawlic, N. (2018). Japanese quince (Chaenomeles japonica L.) fruit polyphenolic extract modulates carbohydrate metabolism in HepG2 cells via AMP-activated protein kinase. Acta Biochimica Polonica, 65(1), 67–68.

Zhang, S. Y., Han, L. Y., Zhang, H., & Xin, H. L. (2014). Chaenomeles speciosa: A review of chemistry and pharmacology. Biomedical Reports, 2, 12–18.

Zheng, C. J., Yoo, J. S., Lee, T. G., Cho, H. Y., Kim, Y. H., & Kim, W. G. (2005) Fatty acids synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Letters, 579(23), 5157–5162.

Zheng, X., Wang, H., Zhang, P., Gao, L., Yan, N., Li, P., Liu, X., Du, Y., & Shen, G. (2018). Chemical composition, antioxidant activity and α-glucosidase inhibitory activity of Chaenomeles speciosa from four production areas in China. Molecules, 23(10), 2518.

Zubair, M. F., Atolani, O., Ibrahim, S. O., Adebisi, O. O., Hamid, A. A., & Sowunmi, R. A. (2017). Chemical constituents and antimicrobial properties of Phyllanthus amarus (Schum & Thonn). Bayero Journal of Pure and Applied Sciences, 10(1), 35.

Zvikas, V., Urbanaviciute, I., Bernotiene, R., Kulakauskiene, D., Morkunaite, U., Balion, Z., Majiene, D., Liaudanskas, M., Viskelis, P., Jekabsone, A., & Jakstas, V. (2021). Investigation of phenolic composition and anticancer properties of ethanolic extracts of japanese quince leaves. Foods, 10, 18.

How to Cite
Lykholat, Y. V., Khromykh, N. O., Didur, O. O., Sklyar, T. V., Holubieva, T. A., Lykholat, T. Y., LavrentievаK. V., & Liashenko, O. V. (2021). GC-MS analysis of cuticular waxes and evaluation of antioxidant and antimicrobial activity of Chaenomeles cathayensis and Ch. × californica fruits . Regulatory Mechanisms in Biosystems, 12(4), 718-723. https://doi.org/10.15421/022199

Most read articles by the same author(s)