The influence of feeding level on the growth of pigs depending on their genotype

  • P. А. Vashchenko Poltava State Agrarian University
  • О. М. Zhukorskyi National Academy of Agrarian Sciences of Ukraine
  • A. M. Saenko Institute of Pig Breeding and Agroindustrial Production of National Academy of Agrarian Sciences of Ukraine
  • A. M. Khokhlov State Biotechnology University
  • S. O. Usenko Poltava State Agrarian University
  • N. V. Kryhina Institute of Pig Breeding and Agroindustrial Production of National Academy of Agrarian Sciences of Ukraine
  • T. V. Sukhno Institute of Pig Breeding and Agroindustrial Production of National Academy of Agrarian Sciences of Ukraine
  • О. М. Tsereniuk Institute of Pig Breeding and Agroindustrial Production of National Academy of Agrarian Sciences of Ukraine
Keywords: pig; feeding technology; DNA-markers; melanocortin 4 receptor gene; genotype-environmental interaction; backfat thickness; average daily gain.


The growth and development of pigs is determined by their genotype and environmental conditions (primarily the level of feeding), however, the number of works aimed at studying the complex influence of genetic and non-genetic factors in their interaction is currently insufficient. The purpose of our work was to estimate the effect of the MC4R genotype, feeding level and interaction of these factors on growth and backfat thickness of crossbred pigs and to investigate the possibility of correcting the melanocortin-4-receptor gene polymorphism effect by adjusting the ration. Studies were conducted on 50 gilts obtained by crossing sows of the large white breed with landrace boars. Experimental pigs at the "Maxi 2010" farm were weighed at birth, then at the age of 28 days (at weaning) and at the age of 4, 6, 8 months. Fat thickness was measured at the age of 4, 6, 8 months. Genetic studies were conducted in a certified laboratory of Institute of Pig Breeding and Agroindustrial Production. Analysis of 50 blood samples revealed that this group of pigs had a sufficient level of polymorphism for research (Polymorphism Information Content was equil 0.35). The frequency of genotype distribution at the MC4R / SNP c.1426 G>A locus was 0.06 (AA) : 0.58 (GA) : 0.36 (GG). The type of feeding significantly influenced the live weight at the age of 4 months and the average daily gains of experimental pigs over the period of 28–120 days. Starting at the age of 6 months a significant effect of the interaction of organized factors (feeding + genotype) was recorded. At the age of 6 months, a significant influence of both the genotype and the level of feeding on the backfat thickness was established. Animals with the GG genotype receiving a restricted feed ration had significantly lower backfat thickness. At the age of 8 months, the difference in backfat thickness between the group with the GG genotype (restricted feed ration) and the AG genotype (high level feeding) reached a value of 12.9% (2.0 mm). Animals with the AG genotype had the lowest performance and the greatest fat thickness under feed limitation, which is important for raising young pigs for subsequent reproduction. Therefore, when selecting pigs to be used for further reproduction, the desired genotype is GG. In the future, it will be desirable to repeat the study on a larger number of pigs, so that the experiment involves a sufficient number of animals with the MC4R AA genotype for statistical processing.


Aikins-Wilson, S., Bohlouli, M., Engel, P., & König, S. (2022). Effects of an herbal diet, diet x boar line and diet x genotype interactions on skin lesions and on growth performance in post-weaning pigs using a cross-classified experiment. Livestock Science, 263, 105010.

Alfonso, L. (2005). Use of meta-analysis to combine candidate gene association to study the relationship between the ESR PvuII polymorphism and sow litter size. Genetics Selection Evolution, 37, 417–435.

Augspurger, N. R., Ellis, M., Hamilton, D. N., Wolter, B. F., Beverly, J. L., & Wilson, E. R. (2002). The effect of sire line on the feeding patterns of grow-finish pigs. Applied Animal Behaviour Science, 75(2), 103–114.

Balatsky, V. N., Grishina, L. P., Saenko, A. M., Vovk, V. A., & Vaschenko, P. A. (2016). Association of the ESR1 gene with reproductive traits of sows of Large White and Mirgorod breeds. Animal Breeding and Genetics, 52, 150–158.

Bankovska, I., Oliinychenko, Y., Balatsky, V., Buslyk, T., Hryshchenko, S., & Susol, R. (2020). Association of LEP- and CTSF-genotypes with levels of meat quality PSE, NOR and DFD in pigs of large white breed of Ukrainian selection. Agricultural Science and Practice, 7(1), 14–23.

Bo, H. X., Van Hung, N., Manh, N. X., & Vinh, N. T. (2022). Additive and dominance effects of MC4R and PIT1 polymorphisms on production and carcass traits in duroc pigs. Vietnam Journal of Agricultural Sciences, 5(4), 1638–1644.

Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics, 32(3), 314–331.

Bovo, S., Ribani, A., Muñoz, M., Alves, E., Araujo, J. P., Bozzi, R., Čandek Potokar, M., Charneca, R., Di Palma, F., Etherington, G., Fernandez, A. I., García, F., García Casco, J., Karolyi, D., Gallo, M., Margeta, V., Martins, J. M., Mercat, M. J., Moscatelli, G., Núñez, Y., Quintanilla1, R., Radović, Č., Razmaite, V., Riquet, J., Savić, R., Schiavo, G., Usai, G., Utzeri, V. J., Zimmer, C., Ovilo, C., & Fontanesi, L. (2020). Whole-genome sequencing of European autochthonous and commercial pig breeds allows the detection of signatures of selection for adaptation of genetic resources to different breeding and production systems. Genetics Selection Evolution, 52, 33.

Brockova, K., Rossokha, V., Chaban, V., Zos-Kior, M., Hnatenko, I., & Rubezhanska, V. (2021). Economic mechanism of optimizing the innovation investment program of the development of agro-industrial production. Management Theory and Studies for Rural Business and Infrastructure Development, 43(1), 129–135.

Burgos, C., Carrodeguas, J. A., Moreno, C., Altarriba, J., Tarrafeta, L., Barcelona, J. A., & López-Buesa, P. (2006). Allelic incidence in several pig breeds of a missense variant of pig melanocortin-4 receptor (MC4R) gene associated with carcass and productive traits; its relation to IGF2 genotype. Meat Science, 73(1), 144–150.

Burgos, C., Galve, A., Moreno, C., Altarriba, J., Reina, R., García, C., & López-Buesa, P. (2012). The effects of two alleles of IGF2 on fat content in pig carcasses and pork. Meat Science, 90(2), 309–313.

Burrow, H. M. (2012). Importance of adaptation and genotype × environment interactions in tropical beef breeding systems. Animal, 6(5), 729–740.

Calta, J., Zadinová, K., Čítek, J., Kluzáková, E., Okrouhlá, M., Stupka, R., Tichý, L., Machová, K., Stratil, A., & Vostrý, L. (2022). Possible effects of the MC4R Asp298Asn polymorphism on pig production traits under ad libitum versus restricted feeding. Journal of Animal Breeding and Genetics, 140(2), 207–215.

Cameron, N. D., Enser, M., Nute, G. R., Whittington, F. M., Penman, J. C., Fisken, A. C., Perry, A. M., & Wood, J. D. (2000). Genotype with nutrition interaction on fatty acid composition of intramuscular fat and the relationship with flavour of pig meat. Meat Science, 55(2), 187–195.

Campbell, R., & Dunkin, A. (1982). The effects of birth weight and level of feeding in early life on growth and development of muscle and adipose tissue in the young pig. Animal Production, 35(2), 185–192.

Canario, L., Lundgren, H., Haandlykken, M., & Rydhmer, L. (2010). Genetics of growth in piglets and the association with homogeneity of body weight within litters. Journal of Animal Science, 88(4), 1240–1247.

Chiurazzi, M., Cozzolino, M., Orsini, R. C., Di Maro, M., Di Minno, M. N. D., & Colantuoni, A. (2020). Impact of genetic variations and epigenetic mechanisms on the risk of obesity. International Journal of Molecular Sciences, 21(23), 9035.

Crovesy, L., & Rosado, E. L. (2019). Interaction between genes involved in energy intake regulation and diet in obesity. Nutrition, 67, 110547.

Davoli, R., & Braglia, S. (2007). Molecular approaches in pig breeding to improve meat quality. Briefings in Functional Genomics, 6(4), 313–321.

Davoli, R., Braglia, S., Valastro, V., Annarratone, C., Comella, M., Zambonelli, P., Nisi, I., Gallo, M., Buttazzoni, L., & Russo, V. (2012). Analysis of MC4R polymorphism in Italian Large White and Italian Duroc pigs: Association with carcass traits. Meat Science, 90(4), 887–892.

Distl, O. (2007). Mechanisms of regulation of litter size in pigs on the genome level. Reproduction in Domestic Animals, 42, 10–16.

Dvořáková, V., Stupka, R., Šprysl, M., Čítek, J., Okrouhlá, M., Kluzáková, E., & Kratochvílová, H. (2011). Effect of the missense mutation Asp298Asn in MC4R on growth and fatness traits in commercial pig crosses in the Czech Republic. Czech Journal of Animal Science, 56(4), 176–180.

Fan, B., Onteru, S. K., Plastow, G. S., & Rothschild, M. F. (2009). Detailed characterization of the porcine MC4R gene in relation to fatness and growth. Animal Genetics, 40(4), 401–409.

Galve, A., Burgos, C., Silió, L., Varona, L., Rodríguez, C., Ovilo, C., & López-Buesa, P. (2012). The effects of leptin receptor (LEPR) and melanocortin-4 receptor (MC4R) polymorphisms on fat content, fat distribution and fat composition in a Duroc× Landrace/Large White cross. Livestock Science, 145, 145–152.

Gondim, V. S., Soares, J. S., Lugo, N. A. H., Stafuzza, N. B., Vieira, G. S., Aspilcueta-Borquis, R. R., Pascoal, L. A. F., Silveira, A. C. P., Tonhati, H., & Antunes, R. C. (2019). Association of MC4R, FABP3 and DGAT1 gene polymorphisms with reproductive traits in two domestic pig lines. Genetics and Molecular Research, 18(3), gmr18139.

Gourdine, J. L., Riquet, J., Rosé, R., Poullet, N., Giorgi, M., Billon, Y., Renaudeau, D., & Gilbert, H. (2019). Genotype by environment interactions for performance and thermoregulation responses in growing pigs. Journal of Animal Science, 97(9), 3699–3713.

Hlazko, V. Y., Shulha, E. V., Dyman, T. N., & Hlazko, H. V. (2001). DNK-tekhnolohii i bioinformatika v reshenii problem byotekhnologii mlekopitaiushchykh [DNA technologies and bioinformatics in solving the problems of mammalian biotechnologies]. Belotserkovskiy Agrarian University, Belaya Tserkov (in Russian).

Jokubka, R., Maak, S., Kerziene, S., & Swalve, H. H. (2006). Association of a melanocortin 4 receptor (MC4R) polymorphism with performance traits in Lithuanian White pigs. Journal of Animal Breeding and Genetics, 123(1), 17–22.

Khalak, V. I., & Gutyj, B. V. (2022). Feeding and meat qualities of young pigs of different genotypes according to melanocortin 4 receptor (Mc4r) gene and interbreed differentiation according to the coefficient of decrease in growth intensity in early ontogenesis. Ukrainian Journal of Veterinary and Agricultural Sciences, 5(3), 3–8.

Kim, K. S., Larsen, N., Short, T., Plastow, G., & Rothschild, M. F. (2000). A missense variant of the porcine melanocortin-4 receptor (MC4R) gene is associated with fatness, growth, and feed intake traits. Mammalian Genome, 11(2), 131–135.

Kim, K. S., Lee, J. J., Shin, H. Y., Choi, B. H., Lee, C. K., Kim, J. J., Cho, B. W., & Kim, T.-H. (2006). Association of melanocortin 4 receptor (MC4R) and high mobility group AT_hook 1 (HMGA1) polymorphisms with pig growth and fat deposition traits. Animal Genetics, 37(4), 419–421.

Lebret, B. (2008). Effects of feeding and rearing systems on growth, carcass composition and meat quality in pigs. Animal, 2(10), 1548–1558.

Llambí, S., Montenegro, M., Gagliardi, R., Burgos, C., Hidalgo, J., López-Buesa, P., & Arruga, M. V. (2020). Genetic structure and population dynamics of autochthonous and modern porcine breeds. Analysis of the IGF2 and MC4R genes that determine carcass characteristics. Austral Journal of Veterinary Sciences, 52(3), 87–94.

Loos, R. J. F., & Yeo, G. S. H. (2022). The genetics of obesity: From discovery to biology. Nature Reviews Genetic, 23, 120–133.

Mahmoud, R., Kimonis, V., & Butler, M. G. (2022). Genetics of obesity in humans: A clinical review. International Journal of Molecular Sciences, 23(19), 11005.

Martins, J. M., Fialho, R., Albuquerque, A., Neves, J., Freitas, A., Tirapicos Nunes, J., & Charneca, R. (2020). Portuguese local pig breeds: Genotype effects on meat and fat quality traits. Animals, 10(5), 905.

Mencik, S., Vukovic, V., Spehar, M., Modric, M., Ostovic, M., & Ekert Kabalin, A. (2019). Association between ESR1 and RBP4 genes and litter size traits in a hyperprolific line of Landrace × Large White cross sows. Veterinarni Medicina, 64, 109–117.

Nagy, I., Kövér, G., Gerencsér, Z., & Szász, G. (2020). Challenges and adaptive strategies for heat stress and heat tolerance in pig production. Acta Agraria Kaposváriensis, 24, 16.

Óvilo, C., Trakooljul, N., Núñez, Y., Hadlich, F., Murani, E., Ayuso, M., García-Contreras, C., Vázquez-Gómez, M., Rey, A. I., Garcia, F., García-Casco, J. M., López-Bote, C., Isabel, B., González-Bulnes, A., Wimmers, K., & Muñoz, M. (2022). SNP discovery and association study for growth, fatness and meat quality traits in Iberian crossbred pigs. Scientific Reports, 12, 16361.

Park, H. B., Carlborg, O., Marklund, S., & Andersson, L. (2002). Melanocortin-4 receptor (MC4R) genotypes have no effect on fatness in a Large White Wild Boar intercross. Animal Genetics, 33, 155–157.

Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics, 28, 2537–2539.

Pierzchała, M., Pareek, C. S., Urbański, P., Goluch, D., Kamyczek, M., Różycki, M., Smoczynski, R., Horbańczuk, J. O., & Kurył, J. (2012). Study of the differential transcription in liver of growth hormone receptor (GHR), insulin-like growth factors (IGF1, IGF2) and insulin-like growth factor receptor (IGF1R) genes at different postnatal developmental ages in pig breeds. Molecular Biology Reports, 39, 3055–3066.

Piórkowska, K., Tyra, M., Rogoz, M., Ropka-Molik, K., Oczkowicz, M., & Różycki, M. (2010). Association of the melanocortin-4 receptor (MC4R) with feed intake, growth, fatness and carcass composition in pigs raised in Poland. Meat Science, 85(2), 297–301.

Provatorov, H. V., Ladyka, V. I., & Bondarchuk, L. V. (2007). Normy hodivli, ratsiony i pozhyvnist kormiv dlia riznykh vydiv silskohospodarskykh tvaryn [Feeding norms, rations and nutritional value of feed for different species of farm animals]. Universytetska Knyha, Sumy (in Ukrainian).

Rudar, M., Fiorotto, M. L., & Davis, T. A. (2019). Regulation of muscle growth in early postnatal life in a swine model. Annual Review of Animal Biosciences, 7, 309–335.

Salajpal, K., Dikic, M., Karolyi, D., Janjecic, Z., & Juric, I. (2009). The effect of MC4R polymorphism on carcass composition and meat quality traits in pigs slaughter at different live weights. Italian Journal of Animal Science, 8(3), 98–100.

Santana, B. A. A., Biase, F. H., Antunes, R. C., Borges, M., Machaim Franco, M., & Goulart, L. R. (2006). Association of the estrogen receptor gene PvuII restriction polymorphism with expected progeny differences for reproductive and performance traits in swine herds in Brazil. Genetics and Molecular Biology, 29, 273–277.

Soleimani, T., Hermesch, S., & Gilbert, H. (2021). Economic and environmental assessments of combined genetics and nutrition optimization strategies to improve the efficiency of sustainable pork production. Journal of Animal Science, 99(3), skab051.

Stachowiak, M., Szydlowski, M., Obarzanek-Fojt, M., & Switonski, M. (2006). An effect of a missense mutation in the porcine melanocortin-4 receptor (MC4R) gene on production traits in Polish pig breeds is doubtful. Animal Genetics, 37(1), 55–57.

Sukhno, V. V., Vashchenko, P. A., Saenko, A. M., Zhukorskyi, O. M., Tserenyuk, O. M., & Kryhina, N. V. (2022). Association of Fut1 and Slc11a1 gene polymorphisms with productivity traits of Large White pigs. Regulatory Mechanisms in Biosystems, 13(3), 225–230.

Suzuki, K., Shinkai, H., Yoshioka, G., Matsumoto, T., Tanaka, J., Hayashi, N., Kitazawa, H., & Uenishi, H. (2021). NOD2 genotypes affect the symptoms and mortality in the porcine circovirus 2-spreading pig population. Genes, 12(9), 1424.

Szyndler-Nędza, M., Tyra, M., Ropka-Molik, K., Piórkowska, K., Mucha, A., Różycki, M., Koska, M., & Szulc, K. (2013). Association between LEPR and MC4R genes polymorphisms and composition of milk from sows of dam line. Molecular Biology Reports, 40, 4339–4347.

van Rens, B. T., de Groot, P. N., & van der Lende, T. (2002). The effect of estrogen genotype on litter size and placental traits at term in F2 crossbred gilts. Theriogenology, 57(6), 1635–1649.

Vashchenko, P. A., & Berezovskyi, M. D. (2021). Influence of climatic factors on the reproductive ability of sows. Pig Breeding, 75–76, 31–40.

Vashchenko, P. A., Balatsky, V. M., Pocherniaev, K. F., Voloshchuk, V. M., Tsybenko, V. H., Saenko, A. M., Oliynychenko, Y. K., Buslyk, T. V., & Rudoman, H. S. (2019). Genetic characterization of the Mirgorod pig breed, obtained by analysis of single nucleotide polymorphisms of genes. Agricultural Science and Practice, 6(2), 47–57.

Vashchenko, P., Saienko, A., Sukhno, V., Tsereniuk, O., Babicz, M., Shkavro, N., Smołucha, G., & Łuszczewska-Sierakowska, I. (2022). Association of NRAMP1 gene polymorphism with the productive traits of the Ukrainian Large White pig. Medycyna Weterynaryjna, 78(11), 563–566.

Virgili, R., Degni, M., Schivazappa, C., Faeti, V., Poletti, E., Marchetto, G., Pacchioli, M. T., & Mordenti, A. (2003). Effect of age at slaughter on carcass traits and meat quality of Italian heavy pigs. Journal of Animal Science, 81(10), 2448–2456.

Walsh, P. S., Metzger, D. A., & Higuchi, R. (1991). Chelex 100 as a medium for extraction of DNA for PCR-based typing from forensic material. BioTechniques, 10, 506–509.

Wang, B., Li, P., Zhou, W., Gao, C., Liu, H., Li, H., Niu, P., Zhang, Z., Li, Q., Zhou, J., & Huang, R. (2019). Association of twelve candidate gene polymorphisms with the intramuscular fat content and average backfat thickness of Chinese Suhuai pigs. Animals, 9(11), 858.

Wang, X., & Kadarmideen, H. N. (2020). Metabolite genome-wide association study (mGWAS) and gene-metabolite interaction network analysis reveal potential biomarkers for feed efficiency in pigs. Metabolites, 10(5), 201.

Xiao-Hui, Y., Yuan, L., Hui, T., Ning-Bo, Z., Ying, W., Shu-Dong, W., & Yun-Liang, J. (2008). Polymorphism of MC4R Asp298Asn site and its relationship with backfat thickness in commercial pigs. Chinese Journal of Agricultural Biotechnology, 5(3), 251–255.

Xu, J., Jiang, A., Zhang, C., Zheng, Y., Zhang, T., & Zhou, L. (2022). Potential of eight mutations for marker-assisted breeding in Chinese Lulai black pigs. Canadian Journal of Animal Science, 102(3), 431–439.

Zhang, G., Gao, W., Tao, S., Yu, L., Zhang, G., & Luo, X. (2018). Online ultrasonic terminal for measuring pig backfat thickness. International Journal of Agricultural and Biological Engineering, 11(2), 190–195.

Zhang, J., Li, J., Wu, C., Hu, Z., An, L., Wan, Y., Fang, C., Zhang, X., Li, J., & Wang, Y. (2020). The Asp298Asn polymorphism of melanocortin-4 receptor (MC4R) in pigs: Evidence for its potential effects on MC4R constitutive activity and cell surface expression. Animal Genetics, 51(5), 694–706.

Zos-Kior, M., Hnatenko, I., Isai, O., Shtuler, I., Samborskyi, O., & Rubezhanska, V. (2020). Management of efficiency of the energy and resource saving innovative projects at the processing enterprises. Management Theory and Studies for Rural Business and Infrastructure Development, 42(4), 504–515.

How to Cite
VashchenkoP. А., ZhukorskyiО. М., Saenko, A. M., Khokhlov, A. M., Usenko, S. O., Kryhina, N. V., Sukhno, T. V., & TsereniukО. М. (2023). The influence of feeding level on the growth of pigs depending on their genotype . Regulatory Mechanisms in Biosystems, 14(1), 112-117.

Most read articles by the same author(s)