The effect of the ryanodine receptor gene on the reproductive traits of Welsh sows

  • О. М. Zhukorskyi National Academy of Agrarian Science of Ukraine
  • О. М. Tsereniuk Institute of Pig Breeding and Agroindustrial Production of National Academy of Agrarian Sciences of Ukraine
  • P. А. Vashchenko Poltava State Agrarian University
  • A. M. Khokhlov State Biotechnology University
  • Y. V. Chereuta Institute of Pig Breeding and Agroindustrial Production of National Academy of Agrarian Sciences of Ukraine
  • О. V. Akimov Institute of Pig Breeding and Agroindustrial Production of National Academy of Agrarian Sciences of Ukraine
  • N. V. Kryhina Institute of Pig Breeding and Agroindustrial Production of National Academy of Agrarian Sciences of Ukraine
Keywords: pigs; reproductive capacity; genetic potential; selection index; phenotypic consolidation; RYR1 gene; mutant allele; stress sensitivity


The reproductive performance of sows largely determines the efficiency of the entire pig farming industry. The purpose of our work is the evaluation of polymorphism of the ryanodine receptor gene and its impact on the reproductive traits of sows of the Welsh breed of pigs. For this study, 148 pigs of the Welsh breed were used. The reproductive traits of sows were evaluated in two adjacent generations. We conducted a comprehensive assessment of the reproductive ability of sows using the SIRQS (selection index of reproductive qualities of sows), determined phenotypic consolidation coefficients and assessed the genetic potential of the animals’ productivity. The polymorphism of the RYR1 gene was determined using polymerase chain reaction-restriction fragment length polymorphism analysis (PCR-RFLP). Data processing was performed using single-factor analysis of variance (ANOVA). Polymorphism of the ryanodine receptor gene in sows of the Welsh pig breed was evaluated. 8.0% of the animals were identified as carriers of the mutant allele of the RYR1 gene. However, no homozygous RYR1-nn animals were found. Pigs of the maternal generation carrying the homozygous NN genotype had better reproductive performance in all indicators. Sows that were carriers of the mutant allele were characterized by lower values of the genetic productivity potential compared with the entire estimated population for all productive traits. Sows which were free of the mutant allele of the RYR1 gene were characterized by large values of the SIRQS index. The values of the coefficients of phenotypic consolidation of the number of live born piglets in sows without the mutant allele were lower than in sows with the mutant allele n. Better performance of sows free of the mutant allele of the RYR1 gene was established over sows carrying it in all evaluated traits of reproductive capacity (for different traits P ranged from 0.021 to 1.0*10–4), except for number of piglets born alive per sow in the daughter generation. Sows with the NN genotype had better selection index values by 15.7% in the maternal generation and by 10.2% in the daughter generation. In order to increase the reproductive ability of sows in the studied population of Welsh pigs and achieve similar results in other herds of this breed, animals free from the mutant allele of the RYR1 gene should be selected for further reproduction in the process of breeding, while on the contrary, carriers of this gene should be gradually eliminated from the herd. To carry out breeding work, further research is needed on the entire population of Welsh pigs for the RYR1 gene.


Babicz, M., Skrzypczak, E., Rejduch, B., Kozubska-Sobocińska, A., Chmielowiec-Korzeniowska, A., & Kasprzak, K. (2012). Effect of thermal stress on reproductive performance parameters of sows with defined genotype at the RYR1 locus. Annals of Animal Science, 12(3), 323–333.

Balatsky, V. N., Saienko, A. M., Pena, R. N., Buslyk, T. V., & Gibolenko, O. S. (2015). Genetic diversity of pig breeds on ten production quantitative traits loci. Cytology and Genetics, 49(5), 299–307.

Bankovska, I., Oliinychenko, Y., Balatsky, V., Buslyk, T., Hryshchenko, S., & Susol, R. (2020). Association of LEP-and CTSF-genotypes with levels of meat quality PSE, NOR and DFD in pigs of large white breed of Ukrainian selection. Agricultural Science and Practice, 7(1), 14–23.

Basovskiy, N. Z. (1991). Evaluation of genetic potential of milk productivity of dairy cattle. Cytology and Genetics, 25(3), 57–61.

Boltovska, L. (2022). Current trends in the development of the meat product subcomplex of Ukraine in the context of European integration. In: Jankovska, A. (Ed.). Modernization of research area: National prospects and European practices. Baltija Publishing, Riga. Pp. 52–86.

Bovo, S., Ribani, A., Munoz, M., Alves, E., Araujo, J. P., Bozzi, R., Charneca, R., Di Palma, F., Etherington, G., Fernandez, A. I., García, F., García-Casco, J., Karolyi, D., Gallo, M., Gvozdanović, K., Martins, J. M., Mercat, M. J., Núñez, Y., Quintanilla, R., Radović, Č., Razmaite, V., Riquet, J., Savić, R., Schiavo, G., Škrlep, M., Usai, G., Utzeri, V. J., Zimmer, C., Ovilo, C., & Fontanesi, L. (2020). Genome‐wide detection of copy number variants in European autochthonous and commercial pig breeds by whole‐genome sequencing of DNA pools identified breed‐characterising copy number states. Animal Genetics, 51(4), 541–556.

Brem, G., & Brening, B. (1993). Use of molecular genetic diagnosis of malignant hyperthermic syndrome (MHS) in selection of pigs. Genetika, 29(6), 1009–1013.

Buske, B., Sternstein, I., & Brockmann, G. (2006). QTL and candidate genes for fecundity in sows. Animal Reproduction Science, 95(3–4), 167–183.

Ciepielewski, Z. M., Stojek, W., Glac, W., & Wrona, D. (2013a). Restraint effects on stress-related hormones and blood natural killer cell cytotoxicity in pigs with a mutated ryanodine receptor. Domestic Animal Endocrinology, 44(4), 195–203.

Ciepielewski, Z. M., Stojek, W., Glac, W., Myślińska, D., Kwaczyńska, A., & Kamyczek, M. (2013b). The effects of ryanodine receptor 1 (RYR1) mutation on plasma cytokines and catecholamines during prolonged restraint in pigs. Veterinary Immunology and Immunopathology, 156(3–4), 176–181.

Dilger, A. C., Chen, X., Honegger, L. T., Marron, B. M., & Beever, J. E. (2022). The potential for gene-editing to increase muscle growth in pigs: Experiences with editing myostatin. CABI Agriculture and Bioscience, 3(1), 1–14.

Ding, R., Zhuang, Z., Qiu, Y., Wang, X., Wu, J., Zhou, S., Ruan, D., Xu, C., Hong, L., Gu, T., Zheng, E., Cai, G., Huang, W., Wu, Z., & Yang, J. (2022). A composite strategy of genome-wide association study and copy number variation analysis for carcass traits in a Duroc pig population. BMC Genomics, 23, 590.

Gómez, Y., Stygar, A. H., Boumans, I. J., Bokkers, E. A., Pedersen, L. J., Niemi, J. K., & Llonch, P. (2021). A systematic review on validated precision livestock farming technologies for pig production and its potential to assess animal welfare. Frontiers in Veterinary Science, 8, 660565.

Guàrdia, M. D., Estany, J., Balasch, S., Oliver, M. A., Gispert, M., & Diestre, A. (2009). Risk assessment of skin damage due to pre-slaughter conditions and RYR1 gene in pigs. Meat Science, 81(4), 745–751.

Han, X., Jiang, T., Yang, H., Zhang, Q., Wang, W., Fan, B., & Liu, B. (2012). Investigation of four porcine candidate genes (H-FABP, MYOD1, UCP3 and MASTR) for meat quality traits in Large White pigs. Molecular Biology Reports, 39(6), 6599–6605.

Ibatullin, I. I., & Zhukorskiy, O. M. (2017). Metodolohiya ta orhanizatsiya naukovykh doslidzhen’ u tvarynnytstvi [Methodology and organization of scientific research in animal husbandry]. Agrarna Nauka, Kyiv (in Ukrainian).

Kadarmideen, H. N. (2007). Biochemical, ECF18R, and RYR1 gene polymorphisms and their associations with osteochondral diseases and production traits in pigs. Biochemical Genetics, 46, 41–53.

Kanis, E., Van den Belt, H., Groen, A. F., Schakel, J., & De Greef, K. H. (2004). Breeding for improved welfare in pigs: A conceptual framework and its use in practice. Animal Science, 78(2), 315–329.

Khalak, V., Bordun, A., Bordunova, O., Pavlenko, J., & Opara, V. (2020). The level of phenotypic consolidation of signs of reproductive qualities of sows of different breeding value and economic efficiency of their. Bulletin of Sumy National Agrarian University, Livestock, 40, 87–93.

Kmieć, M., Dwořák, J., & Vrtková, I. (2000). Relations between the polymorphism in the ryanodine receptor gene (RYR1) and certain reproductive traits of sows in a herd of Polish Landrace pigs. Animal Science Papers and Reports, 18(4), 277–283.

Kopytets, N. (2018). Suchasnyj stan ta tendenciji rozvytku rynku svynyny v Ukrajini [Current state and development trends of the pork market in Ukraine]. Ekonomika APK, 11, 44–54 (in Ukrainian).

Kovalenko, V. P., & Nezhlukchenko, T. I. (2008). Metody ocinky genetychnogo potencialu i kontroliu selekcijnykh procesiv u tvarynnyctvi [Methods of evaluation of genetic potential and control of selection process in animal breeding]. Tavrian Scientific Bulletin, 64, 143–149 (in Ukrainian).

Ladyka, V., & Khmelnychyi, S. L. (2019). Phenotypic consolidation breeding groups of cows Sumy intrabreed type of Ukrainian black-and-white dairy breed of different origin by linear traits of conformation type. Bulletin of Sumy National Agrarian University, Livestock, 38, 3–11.

Lebret, B., & Čandek-Potokar, M. (2021). Pork quality attributes from farm to fork. Part I. Carcass and fresh meat. Animal, 2021, 100402.

Liu, Y., Liu, Y., Ma, T., Long, H., Niu, L., Zhang, X., Lei, Y., Wang, L., Chen, Y., Wang, Q., Zheng, Z., & Xu, X. (2019). A splicing mutation in PHKG 1 decreased its expression in skeletal muscle and caused PSE meat in Duroc× Luchuan crossbred pigs. Animal Genetics, 50(4), 395–398.

López-Vergé, S., Gasa, J., Farré, M., Coma, J., Bonet, J., & Solà-Oriol, D. (2018). Potential risk factors related to pig body weight variability from birth to slaughter in commercial conditions. Translational Animal Science, 2(4), 383–395.

Mayorga, E. J., Renaudeau, D., Ramirez, B. C., Ross, J. W., & Baumgard, L. H. (2019). Heat stress adaptations in pigs. Animal Frontiers, 9(1), 54–61.

McGlone, J. J. (2013). The future of pork production in the world: Towards sustainable, welfare-positive systems. Animals, 3(2), 401–415.

Mote, B. E., & Rothschild, M. F. (2020). Modern genetic and genomic improvement of the pig. In: Bazer, F. W., Lamb, G. C., & Wu, G. (Eds.). Animal agriculture: Sustainability, challenges and innovations. Academic Press. Pp. 249–262.

Muro, B., Carnevale, R., Leal, D., Almond, G., Monteiro, M., Poor, A., Schinckel, A. P., & Garbossa, C. (2022). The importance of optimal body condition to maximise reproductive health and perinatal outcomes in pigs. In: Edwards, C. (Ed.). Nutrition research reviews. Cambridge University Press. Pp. 1–21.

Mykytyuk, V. (2021). Regularities and trends of the of the livestock industry current state in the Zhytomyr region. Scientific Horizons, 24(1), 36–44.

Mylostуva, D., Prudnikov, V., Kolisnyk, O., Lykhach, A., Begma, N., Кalinichenko, O., Khmeleva, O., Sanzhara, R., Izhboldina, O., & Mylostyvyi, R. (2022). Biochemical changes during heat stress in productive animals with an emphasis on the antioxidant defense system. Journal of Animal Behaviour and Biometeorology, 10(1), 1–9.

Nevrkla, P., Kapelański, W., Václavková, E., Hadaš, Z., Cebulska, A., & Horký, P. (2017). Meat quality and fatty acid profile of pork and backfat from an indigenous breed and a commercial hybrid of pigs. Annals of Animal Science, 17(4), 1215–1227.

Nienartowicz-Zdrojewska, A., Sobek, Z., Buczyński, J. T., Konieczka, A., & Różańska-Zawieja, J. (2017). Productivity of pigs of conservation breeds in terms of selected gene polymorphisms. Medycyna Weterynaryjna, 73(6), 352–356.

Otto, G., Roehe, R., Looft, H., Thoelking, L., Knap, P. W., Rothschild, M. F., Plastow, G. S., & Kalm, E. (2007). Associations of DNA markers with meat quality traits in pigs with emphasis on drip loss. Meat Science, 75(2), 185–195.

Peltoniemi, O., Björkman, S., Oropeza-Moe, M., & Oliviero, C. (2019). Developments of reproductive management and biotechnology in the pig. Animal Reproduction, 16, 524–538.

Polupan, Y. P. (2001). Problemy konsolidaciji riznyh selekcijnyh grup tvaryn [Problems of consolidation of different selection groups of animals]. Bulletin of Agrarian Science, 12, 42–46 (in Ukrainian).

Rauw, W. M., de Mercado de la Peña, E., Gomez-Raya, L., García Cortés, L. A., Ciruelos, J. J., & Gómez Izquierdo, E. (2020). Impact of environmental temperature on production traits in pigs. Scientific Reports, 10, 2106.

Rexroad, C., Vallet, J., Matukumalli, L. K., Reecy, J., Bickhart, D., Blackburn, H., Boggess, M., Cheng, H., Clutter, A., Cockett, N., Ernst, C., Fulton, J. E., Liu, J., Lunney, J., Neibergs, H., Purcell, C., Smith, T. P. L., Sonstegard, T., Taylor, J., Telugu, B., Van Eenennaam, A., Van Tassell, C. P., & Wells, K. (2019). Genome to phenome: Improving animal health, production, and well-being – a new USDA blueprint for animal genome research 2018–2027. Frontiers in Genetics, 10, 327.

Rudoman, H. S., Balatsky, V. M., Nor, V. Y., & Vovk, V. O. (2017). Zviazok polimorfizmu g307 G>A SNP henu alfa-fukozyltrasferazy 1 iz hospodors’ko-korysnymy oznakamy svynej velykoji biloji porody [Association of g307 G>A SNP polymorphism of alpha-fucosyltransferase 1 gene with economically useful traits of large white pigs]. Animal Breeding and Genetics, 54, 134–140 (in Ukrainian).

Rybarczyk, A., Pietruszka, A., Jacyno, E., Dvořák, J., Karamucki, T., & Jakubowska, M. (2010). Association of RYR1 and MYOG genotype with carcass and meat quality traits in grower-finisher pigs. Acta Veterinaria Brno, 79(2), 243–248.

Samokhina, E. A., & Myhalko, O. G. (2018). Morphological composition of pigs carcasses – final hybrids of genotype yorkshire × landrace × maxgro depending on weight conditions. Animal Breeding and Genetics, 55, 124–130 (in Ukrainian).

Shin, D., Oh, J. D., Won, K. H., & Song, K. D. (2018). In silico approaches to identify the functional and structural effects of non-synonymous SNPs in selective sweeps of the Berkshire pig genome. Asian-Australasian Journal of Animal Sciences, 31(8), 1150.

Spring, S., Premathilake, H., Bradway, C., Shili, C., DeSilva, U., Carter, S., & Pezeshki, A. (2020a). Effect of very low-protein diets supplemented with branched-chain amino acids on energy balance, plasma metabolomics and fecal microbiome of pigs. Scientific Reports, 10, 15859.

Spring, S., Premathilake, H., DeSilva, U., Shili, C., Carter, S., & Pezeshki, A. (2020b). Low protein-high carbohydrate diets alter energy balance, gut microbiota composition and blood metabolomics profile in young pigs. Scientific Reports, 10, 3318.

Stoyanovskyy, V. G., Usenko, S. O., Shostya, A. M., Kuzmenko, L. M., Slynko, V. G., & Tenditnyk, V. S. (2020). Hormonal regulation of prooxidant-antioxidant homeostasis in gilts. Ukrainian Journal of Veterinary and Agricultural Sciences, 3(3), 39–43.

Szyndler-Nędza, M., Ropka-Molik, K., Mucha, A., Blicharski, T., & Babicz, M. (2019). Performance traits of Pulawska pigs depending on polymorphism in the RYR1 gene (c. 1843C>T). Annual Animal Science, 19(2), 319–326.

Tarczyński, K., Zybert, A., Sieczkowska, H., Krzęcio-Nieczyporuk, E., & Antosik, K. (2021). Classification accuracy of different pork quality evaluation methods in assessment of meat with lowered drip loss. Ciência Rural, 51(10), e20200885.

Tsereniuk, O., Tsereniuk, M., Akimov, O., Paliy, A., Nanka, O., Shkromada, O., & Pomitun, I. (2018). Dependence of sows’ productivity on the reason of their culling, in index selection. Porchine Research, 8(1), 17–23.

Uemoto, Y., Ichinoseki, K., Matsumoto, T., Oka, N., Takamori, H., Kadowaki, H., Kojima-Shibata, C., Suzuki, E., Okamura, T., Aso, H., Kitazawa, H., Satoh, M., Uenishi, H., & Suzuki, K. (2021). Genome-wide association studies for production, respiratory disease, and immune-related traits in Landrace pigs. Scientific Reports, 11, 15823.

Vashchenko, P. A. (2003). Reproduktyvni jakosti velykoji biloji porody pry poednanni genotypiv vitchyznjanoji i zarubizhnoji selekciji [Reproductive qualities of a large white breed when combining genotypes of domestic and foreign breeding]. Bulletin of Poltava State Agrarian Academy, (1–2), 165–166 (in Ukrainian).

Vashchenko, P. A., Balatsky, V. M., Pocherniaev, K. F., Voloshchuk, V. M., Tsybenko, V. H., Saenko, A. M., Oliynychenko, Y. K., Buslyk, T. V., & Rudoman, H. S. (2019). Genetic characterization of the mirgorod pig breed, obtained by analysis of single nucleotide polymorphisms of genes. Agricultural Science and Practice, 6(2), 47–57.

Vashchenko, P., Saienko, A., Sukhno, V., Tsereniuk, O., Babicz, M., Shkavro, N., Smołucha, G., & Łuszczewska-Sierakowska, I. (2022). Association of NRAMP1 gene polymorphism with the productive traits of the Ukrainian Large White pig. Medycyna Weterynaryjna, 78(11), 563–566.

Vranken, E., & Berckmans, D. (2017). Precision livestock farming for pigs. Animal Frontiers, 7(1), 32–37.

Wang, B. B., Hou, L. M., Zhou, W. D., Liu, H., Tao, W., Wu, W. J., Niu, P. P., Zhang, Z. P., Zhou, J., Li, Q., Huang, R. H., & Li, P. H. (2021). Genome-wide association study reveals a quantitative trait locus and two candidate genes on Sus scrofa chromosome 5 affecting intramuscular fat content in Suhuai pigs. Animal, 15(9), 100341.

Wang, Z. Y., & Brummer, E. C. (2012). Is genetic engineering ever going to take off in forage, turf and bioenergy crop breeding? Review: Part of highlight on breeding strategies for forage and grass improvement. Annals of Botany, 110(6), 1317–1325.

Webb, E. C., & Casey, N. H. (2010). Physiological limits to growth and the related effects on meat quality. Livestock Science, 130, 33–40.

Wilkinson, S., Archibald, A. L., Haley, C. S., Megens, H.-J., Crooijmans, R., Groenen, M., Wiener, P., & Ogden, R. (2012). Development of a genetic tool for product regulation in the diverse British pig breed market. BMC Genomics, 13, 580.

Xue, Y., Liu, S., Li, W., Mao, R., Zhuo, Y., Xing, W., Liu, J., Wang, C., Zhou, L., Lei, M., & Liu, J. (2022). Genome-wide association study reveals additive and non-additive effects on growth traits in Duroc pigs. Genes, 13(8), 1454.

Zequan, X., Yonggang, S., Heng, X., Yaodong, W., Xin, M., Dan, L., Li, Z., Tingting, D., & Zirong, W. (2022). Transcriptome-based analysis of early post-mortem formation of pale, soft, and exudative (PSE) pork. Meat Science, 194, 108962.

How to Cite
ZhukorskyiО. М., TsereniukО. М., VashchenkoP. А., Khokhlov, A. M., Chereuta, Y. V., AkimovО. V., & Kryhina, N. V. (2022). The effect of the ryanodine receptor gene on the reproductive traits of Welsh sows . Regulatory Mechanisms in Biosystems, 13(4), 367-372.

Most read articles by the same author(s)