Association of Fut1 and Slc11a1 gene polymorphisms with productivity traits of Large White pigs

  • V. V. Sukhno Institute of Pig Breeding and Agroindustrial Production of National Academy of Agrarian Sciences of Ukraine
  • P. A. Vashchenko Poltava State Agrarian University
  • A. M. Saenko Institute of Pig Breeding and Agroindustrial Production of National Academy of Agrarian Sciences of Ukraine
  • O. M. Zhukorskyi National Academy of Agrarian Sciences of Ukraine
  • O. M. Tserenyuk Institute of Pig Breeding and Agroindustrial Production of National Academy of Agrarian Sciences of Ukraine
  • N. V. Kryhina Institute of Pig Breeding and Agroindustrial Production of National Academy of Agrarian Sciences of Ukraine
Keywords: pig breeding; genomic selection; DNA-markers; disease resistance; animal growth; average daily gain; body development; backfat thickness.


The purpose of our work was to study the polymorphism of genes associated with disease resistance and to search for their associations with productive traits in the population of the Ukrainian Large White pigs. For this study, 50 pigs were used, observations and measurements were carried out at the age from birth to 180 days. Genetic studies were carried out in a certified laboratory of the Institute of Pig Breeding and Agroindustrial Production. In the study of fucosyltransferase 1 and solute carrier family 11 member 1 genes, polymorphism was found in three of the five analyzed loci. In the Ukrainian Large White subpopulation of pigs the informativeness of these gene polymorphisms was at the optimal level for associative analysis, Polymorphism Information Content was greater than 0.3 in two loci. A sufficiently high level of Polymorphism Information Content indicates the value of this breed to preserve the biodiversity of pigs. The distribution of genotypes at some loci of the solute carrier family 11 member 1 gene was characterized by a deviation from the theoretically expected one due to the increase in the frequency of the heterozygous genotype. There was also a statistically confirmed deviation of the genotypes’ distribution from the normal and polymorphism fucosyltransferase 1 gene, but in this case in the direction of increasing the frequency of both homozygous variants. These results indicate the presence of a certain selection pressure on the mentioned polymorphisms and their possible impact on productive traits. The influence of solute carrier family 11 member 1 gene polymorphism on the weight of pigs at the age of 120 and 180 days, the average daily gain recorded in the period 28–120 days and from birth to 180 days, as well as on the backfat thickness, was established. The preferred genotype is TT, which can be used in breeding to obtain more productive animals with increased disease resistance, but in the selection of animals at this locus, it is necessary to control the backfat thickness and prevent breeding of pigs that may worsen this trait.


Adams, L. G., & Templeton, J. W. (1998). Genetic resistance to bacterial diseases of animals. Revue Scientifique et Technique – Office International des Epizooties, 17(1), 200–219.
Ardiyana, M., Gunawan, A., Murtini, S., Sartika, T., & Sumantri, C. (2020). Polymorphisms and associations of the NRAMP-1 and iNOS genes on Newcastle disease and Salmonella enteritidis resistances in SenSi-1 Agrinak Chickens. Tropical Animal Science Journal, 43(2), 95–102.
Berezovskyy, M. D., Narizhna, O. L., Vashchenko, P. A., Shostya, A. M., Usenko, S. O., Kuzmenko, L. M., & Slynko, V. H. (2021). Terminal boars and other male parents in hybridization system. Bulletin of Poltava State Agrarian Academy, 3, 135–141.
Blackwell, J. M., Searle, S., Mohamed, H., & White, J. K. (2003). Divalent cation transport and susceptibility to infectious and autoimmune disease: Continuation of the Ity/Lsh/Bcg/Nramp1/Slc11a1 gene story. Immunology Letters, 85, 197–203.
Bosewell, A., Naicy, T., Aravindakshan, T. V., & Kurian, E. (2018). Sequence characterization, structural analysis, SNP detection and expression profiling of SLC11A1 gene in Indian goats. Small Ruminant Research, 164, 15–21.
Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3), 314–331.
Braliou, G. G., Kontou, P. I., Boleti, H., & Bagos, P. G. (2019). Susceptibility to leishmaniasis is affected by host SLC11A1 gene polymorphisms: A systematic review and meta-analysis. Parasitology Research, 118(8), 2329–2342.
Cellier, M., Govoni, G., & Vidal, S. (1994). Human natural resistance associated macrophage protein: cDNA cloning, chromosomal mapping, genomic organization and tissue-specific expression. Journal of Experimental Medicine, 180, 1741–1752.
Chen, C., Deng, B., Qiao, M., Zheng, R., Chai, J., Ding, Y., & Jiang, S. (2012). Solexa sequencing identification of conserved and novel microRNAs in backfat of Large White and Chinese Meishan pigs. PLoS One, 7(2), e31426.
Cuong, N. V., Thu, N. T., Thoa, T. T., Hoan, T. X., Thuy, N. T., & Thuy, N. T. D. (2012). Polymorphisms of candidate genes associated with meat quality and disease resistance in indigenous and exotic pig breeds of Vietnam. South African Journal of Animal Science, 42, 221–231.
Dai, C. H., Wu, J. Y., Zhao, C. X., Yu, L. H., Bao, W. B., & Wu, S. L. (2017). Nramp1 gene expression in different tissues of Meishan piglets from newborn to weaning. Genetics and Molecular Research, 16, 19288.
Devi, B., Laskar, S., Borah, P., & Bharti, P. (2018). Cloning and polymorphism of disease resistance SLC11A1 gene in pig (Sus scrofa): A review. International Journal of Livestock Research, 8(9), 36–48.
Devi, B., Laskar, S., Borah, P., Hussain, I., & Bharti, P. K. (2017). Sequencing and phylogenetic analysis of the SLC11A1 gene in pigs. Journal of Applied Animal Research, 45(1), 494–497.
Dimitrova, A., & Yordanov, S. (2020). Sensitivity of Escherichia coli strains isolated from pigs in the period 2006–2015 to antimicrobial drugs. Acta Microbiologica Bulgarica, 36(1), 9–18.
Fleming, M. D., Trenor, C. C. 3rd, Su, M. A., Foernzler, D., Beier, D. R., Dietrich, W. F., & Andrews, N. C. (1997). Microcytic anaemia mice have a mutation in Nramp2, a candidate iron transporter gene. Nature Genetics, 16, 383–386.
Geraci, C., Varzandi, A. R., Schiavo, G., Bovo, S., Ribani, A., Utzeri, V. J., Galimberti, G., Buttazzoni, L., Ovilo, C., Gallo, M., Dall’Olio, S., & Fontanesi, L. (2019). Genetic markers associated with resistance to infectious diseases have no effects on production traits and haematological parameters in Italian Large White Pigs. Livestock Science, 223, 32–38.
Golovko, V. O., Severin, R. V., Voitenko, R. V., Kochmarski, V. A., Ivanchenko, I. M., Gontar, A. M., & Kuzmenko, M. V. (2019). PRRS in the nozoprofile of infectious diseases in pigs in Chornuhynsky District of Poltava Region. Veterinary Science, Technologies of Animal Husbandry and Nature Management, 3, 243–249.
Gunshin, H., Mackenzie, B., Berger, U. V., Gunshin, Y., Romero, M. F., Boron, W. F., Nussberger, S., Gollan, J. L., & Hediger, M. A. (1997). Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 388, 482–488.
Hlazko, V. Y., Shulha, E. V., Dyman, T. N., & Hlazko, H. V. (2001). DNK-tekhnolohii i bioinformatika v reshenii problem byotekhnologii mlekopitaiushchykh [DNA technologies and bioinformatics in solving the problems of mammalian biotechnologies]. BSAU, Belaya Tserkov (in Russian).
Holder, A., Garty, R., Elder, C., Mesnard, P., Laquerbe, C., Bartens, M. C., Salavati, M., Tzelos, T., Connelley, T., Villarreal-Ramos, B., & Werling, D. (2020). Analysis of genetic variation in the bovine SLC11A1 gene, its influence on the expression of NRAMP1 and potential association with resistance to bovine tuberculosis. Frontiers in Microbiology, 11, 1420.
Huang, M., Yang, B., Chen, H., Zhang, H., Wu, Z., Ai, H., & Huang, L. (2020). The fine-scale genetic structure and selection signals of Chinese indigenous pigs. Evolutionary Applications, 13(2), 458–475.
Kim, K., Nguyen, D. T., Choi, M., & Kim, J. H. (2013). Alpha (1,2)-fucosyltransferase M307A polymorphism improves piglet survival. Animal Biotechnology, 24, 243–250.
Kupczyński, R., Szumny, A., Bednarski, M., Piasecki, T., Śpitalniak-Bajerska, K., & Roman, A. (2019). Application of Pontentilla anserina, Polygonum aviculare and Rumex crispus mixture extracts in a rabbit model with experimentally induced E. coli infection. Animals, 9(10), 774.
Le, T. T. H., Tran, T. H. G., & Nghia, S. H. (2021). Fertility, growth rate, polymorphism of GH and FUT1 genes of hybrid between wild boars and indigenous breeds. Chemical Engineering Transactions, 89, 109–114.
Li, T., Wang, L., Guo, C., Zhang, H., Xu, P., Liu, S., Hu, X., & Gao, Q. (2022). Polymorphisms of SLC11A1 (NRAMP1) rs17235409 associated with and susceptibility to spinal tuberculosis in a Southern Han Chinese population. Infection, Genetics and Evolution, 98, 105202.
Liu, K., Zhang, B., Teng, Z., Wang, Y., Dong, G., Xu, C., & Zhang, Y. (2017). Association between SLC11A1 (NRAMP1) polymorphisms and susceptibility to tuberculosis in Chinese Holstein Cattle. Tuberculosis, 103, 10–15.
Luc, D. D., Thinh, N. H., Bo, H. X., Vinh, N. T., Manh, T. X., Hung, N. V., Ton, V. D., & Farnir, F. (2020). Mutation c. 307G> A in FUT1 gene has no effect on production performance of Yorkshire Pigs in the tropics: The case of Vietnam. Canadian Journal of Animal Science, 100(3), 426–431.
Matsenko, O. V., Mogilyovskyy, V. M., Mitrofanov, O. V., Maslak, Y. V., Shchepetilnikov, Y. O., Pasechnik, V. A., & Furda, I. V. (2019). The complex scheme of prevention of gastrointestinal diseases of piglets in farm condition. Veterinary Science, Technologies of Animal Husbandry and Nature Management, 3, 144–153.
Nevrkla, P., Kapelański, W., Václavková, E., Hadaš, Z., Cebulska, A., & Horký, P. (2017). Meat quality and fatty acid profile of pork and backfat from an indigenous breed and a commercial hybrid of pigs. Annals of Animal Science, 17(4), 1215–1227.
Peakall, R., & Smouse, P. E. (2012). GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics, 28, 2537–2539.
Pires, V. S., Fernando, A. D. O., Minozzo, G. A., de Castro, L. L. D., Moncada, A. D., Klassen, G., Ramos, E. A. S., & Molento, M. B. (2021). Epigenetic regulation of SLC11a1 gene in horses infected with cyathostomins. Gene Reports, 25, 101410.
Prajapati, B. M., Gupta, J. P., Pandey, D. P., Parmar, G. A., & Chaudhari, J. D. (2017). Molecular markers for resistance against infectious diseases of economic importance. Veterinary World, 10(1), 112–120.
Proudfoot, C., Lillico, S., & Tait-Burkard, C. (2019). Genome editing for disease resistance in pigs and chickens. Animal Frontiers, 9(3), 6–12.
Provatorov, H. V., Ladyka, V. I., & Bondarchuk, L. V. (2007). Normy hodivli, ratsiony i pozhyvnist’ kormiv dlia riznykh vydiv silskohospodarskykh tvaryn [Feeding norms, rations and nutritional value of feed for different species of farm animals]. Sumy (in Ukrainian).
Richards, J. D., Gong, J., & de Lange, C. F. M. (2005). The gastrointestinal microbiota and its role in monogastric nutrition and health with an emphasis on pigs: Current understanding, possible modulations, and new technologies for ecological studies. Canadian Journal of Animal Science, 85(4), 421–435.
Ruan, G. R., Xing, Y. Y., Fan, Y., Qiao, R. M., He, X. F., Yang, B., Ding, N. S., Ren, J., Huang, L. S., & Xiao, S. J. (2013). Genetic variation at RYR1, IGF2, FUT1, MUC13, and KPL2 mutations affecting production traits in Chinese commercial pig breeds. Czech Journal of Animal Science, 58, 65–70.
Rudoman, H. S., Balatsky, V. M., Nor, V. Y., & Vovk, V. O. (2017a). Zviazok polimorfizmu 1849 G>C henu mutsyn 4 iz hospodarsko-korysnymy oznakamy svynei Velykoi Biloi porody [Association of 1849g>с polymorphism of the mucin 4 gene with economicaly important traits in the Large White pig breed]. Scientific and Technological Bulletin, 117, 142–147 (in Ukrainian).
Rudoman, H. S., Balatsky, V. M., Nor, V. Y., & Vovk, V. O. (2017b). Zviazok polimorfizmu g307 G>A SNP henu alfa-fukozyltrasferazy 1 iz hospodorsko-korysnymy oznakamy svynej velykoji biloji porody [Association of g307 G> A SNP polymorphism of alpha-fucosyltransferase 1 gene with economically useful traits of large white pigs]. Animal Breeding and Genetics, 54, 134–140 (in Ukrainian).
Sahraoui, H., Madani, T., Fantazi, K., Khouane, A. C., Ameur, A. A., Paschino, P., & Dettori, M. L. (2020). Genetic variability in the A microsatellite at SLC11A1 gene and possible implications with innate resistance against brucellosis in Algerian native goats. Biodiversitas Journal of Biological Diversity, 21(12), 5630–5636.
Tait-Burkard, C., Doeschl-Wilson, A., McGrew, M. J., Archibald, A. L., Sang, H. M., Houston, R. D., Whitelaw, C. B., & Watson, M. (2018). Livestock 2.0 – genome editing for fitter, healthier, and more productive farmed animals. Genome Biology, 19, 204.
Tuggle, C. K., Marklund, L., Stabel, T. J., Mellencamp, M. A., & Stumbaugh, A. (2005). Genetic markers for screening animals for improved disease resistance (NRAMP). United States Patent, 6844159B2.
van der Steen, H. A. M., Prall, G. F. W., & Plastow, G. S. (2005). Application of genomics to the pork industry. Journal of Animal Science, 83(13), 1–8.
Vashchenko, P. A., Balatsky, V. M., Pocherniaev, K. F., Voloshchuk, V. M., Tsybenko, V. H., Saenko, A. M., Oliynychenko, Y. K., Buslyk, T. V., & Rudoman, H. S. (2019). Genetic characterization of the Mirgorod pig breed, obtained by analysis of single nucleotide polymorphisms of genes. Agricultural Science and Practice, 6(2), 47–57.
Vasilyeva, T. B. (2016). The monitoring of epizootic situation of colibacteriosis in Ukraine during 2004–2015. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies, Series Veterinary Sciences, 18(66), 30–34.
Walsh, P. S., Metzger, D. A., & Higuchi, R. (1991). Chelex 100 as a medium for extraction of DNA for PCR-based typing from forensic material. BioTechniques, 10, 506–509.
Wen, Y., Cheng, X., & Zhao, S. (2018). Nucleotide variants of the Nramp1 gene in pigs and their effects on disease resistance. Indian Journal of Animal Research, 52(4), 8491.
Wu, H. M., Wang, L. X., Cheng, D. X., & Ma, X. J. (2008). Relationship between polymorphisms of Nramp1 gene and immune function of pig. Zhongguo Nong Ye Ke Xue, 41, 215–220.
Wu, Z. F., Luo, W. H., Yang, G. F., & Zhang, X. Q. (2007). Genomic organization and polymorphisms detected by denaturing high-performance liquid chromatography of porcine SLC11A1 gene. DNA Sequence, 18(5), 327–333.
Xie, Z., Pang, D., Yuan, H., Jiao, H., Lu, C., Wang, K., & Ouyang, H. (2018). Genetically modified pigs are protected from classical swine fever virus. PLoS Pathogens, 14(12), e1007193.
Yakubchak, O. M., Obshtat, S. V., Mukovoz, V. M., Karpulenko, M., & Gavrylenko, O. (2014). The analysis of the epizootic situation of infectious diseases of pigs in Ukraine. Bulletin of Poltava State Agrarian Academy, 3, 82–85 (in Ukrainian).
Yan, X. M., Ren, J., Ai, H. S., Ding, N. S., Gao, J., Guo, Y. M., Chen, C. Y., Ma, J. W., Shu, Q. L., & Huang, L. S. (2004). Genetic variations analysis and characterization of the fifth intron of porcine NRAMP1 gene. Asian-Australasian Journal of Animal Sciences, 17, 1183–1187.
Zhang, G. H., Gao, W. L., Tao, S., Yu, L. N., Zhang, G. F., & Luo, X. (2018). Online ultrasonic terminal for measuring pig backfat thickness. International Journal of Agricultural and Biological Engineering, 11(2), 190–195.
Zhang, Y., Wang, M., Yu, X. Q., Ye, C. R., & Zhu, J. G. (2013). Analysis of polymorphisms in the FUT1 and TAP1 genes and their influence on immune performance in Pudong White Pigs. Genetics and Molecular Research, 14(4), 17193–17203.
Zhu, S., Liu, Y., Dong, W., Zheng, X., Zhu, G., Wu, S., & Bao, W. (2014). Polymorphism of FUT1 Gene M307 and its relationship with partial immune indexes and economic traits in Yorkshire Pigs. Asian Journal of Animal and Veterinary Advances, 9, 253–261.
How to Cite
Sukhno, V. V., Vashchenko, P. A., Saenko, A. M., Zhukorskyi, O. M., Tserenyuk, O. M., & Kryhina, N. V. (2022). Association of Fut1 and Slc11a1 gene polymorphisms with productivity traits of Large White pigs . Regulatory Mechanisms in Biosystems, 13(3), 225-230. Retrieved from