Epizootological and epidemiological situation of anthrax in Ukraine in the context of mandatory specific prevention in susceptible animals
Abstract
The problem of zoonoses remains relevant in the context of reliable prevention of human disease and effective ways to achieve this result, in particular through the impact on susceptible animals by the efforts of veterinary medicine. Anthrax is an acute, particularly dangerous infectious disease of all species of farm, domestic and wild animals, as well as humans, which is caused by Bacillus anthracis microbes. The causative agent of anthrax belongs to the group of aerobic spore-forming bacteria and exists in two main forms: vegetative and spore. The vegetative form in the body of an infected animal can form a "capsule". In Ukraine, according to the provisions of the current "Instruction for the prevention and control of animal anthrax" (2000), the main method of preventing anthrax among animals is regular vaccination of animals susceptible to this disease. The authors conducted a retrospective analysis of the epizootic and epidemiological situation of anthrax in Ukraine for the period 1994–2021 and made a critical assessment of the performance of mandatory measures for specific prevention of susceptible animals. In order to find out the ecological and geographical features of the spread of anthrax, data on outbreaks of the disease in cattle, swine, small ruminants and humans on the territory of Ukraine were analyzed by regions for the time period under investigation. Over the past 28 years in Ukraine, animal anthrax was registered in in all areas except Zhytomyr region. In total, during the analyzed period, 177 affected points and 637 infected animals (cattle, small ruminants, pigs, horses, wild and fur-bearing animals, dogs) were registered (estimated at 3.59 animals per outbreak). Cattle were most often involved in the epizootic process, followed by pigs and small ruminants, while horses and other animal species were least infected. Ecological and geographical analysis showed that the largest number of affected points among animals during the analyzed period was found in Kyiv, Volyn, Kharkiv, Luhansk, Khmelnytskyi, Cherkasy, Odesa, and Vinnytsia regions. A small number of affected points during the analyzed period were found in Zakarpattia, Ternopil, Kherson, Autonomous Republic of Crimea, Poltava, Dnipropetrovsk and Ivano-Frankivsk regions. During the analyzed period, 68 people in 11 regions of Ukraine were infected with anthrax, 15 outbreaks were registered (4.46 people per outbreak). Most cases were reported in Donetsk, Kyiv and Odesa regions. The association between outbreaks of anthrax in animals and cases of anthrax among humans has been established, this dependency was 86.6% (the index of contiguity, which takes into account the number of years with simultaneous registration of animal and human cases, was 0.5). The authors thoroughly proved that it is vaccination among susceptible animals that will finally prevent the incidence of anthrax among people.References
Belov, A. B., & Ogarkov, P. I. (2010). Biologicheskoe raznoobrazie vozbuditeley infektsionnyih bolezney i epidemicheskiy protsess [Biological diversity of the causative agents of infectious diseases and the epidemic process]. Epidemiologiya i Infektsionnyie Bolezni, 1, 53–57 (in Russian).
Bezymennyi, M., Bagamian, K. H., Barro, A., Skrypnyk, A., Skrypnyk, V., & Blackburn, J. K. (2014). Spatio-temporal patterns of livestock anthrax in Ukraine during the past century (1913–2012). Applied Geography, 54, 129–138.
Blackburn, J. K., Odugbo, M. O., Van Ert, M., O’Shea, B., Mullins, J., Perreten, V., Maho, A., Hugh-Jones, M., & Hadfield, T. (2015). Bacillus anthracis diversity and geographic potential across Nigeria, Cameroon and Chad: Further support of a novel West African lineage. PLoS Neglected Tropical Diseases, 9(8), e0003931.
Bobylova, O. O., Mukharska, L. M., Nekrasova, L. S., & Nesterenko, L. P. (2001). Sybirka v Ukraini. Epidemiolohichnyi analiz za 55 rokiv (1946–2001) [Anthrax in Ukraine. Epidemiological analysis for 55 years (1946–2001)]. Suchasni Infektsii, 3, 5–9 (in Russian).
Carlson, C. J., Kracalik, I. T., Ross, N., Alexander, K. A., Hugh-Jones, M. E., Fegan, M., Elkin, B. T., Epp, T., Shury, T. K., Zhang, W., Bagirova, M., Getz, W. M., & Blackburn, J. K. (2019). The global distribution of Bacillus anthracis and associated anthrax risk to humans, livestock and wildlife. Nature Microbiology, 4(8), 1337–1343.
Chen, W. J., Lai, S. J., Yang, Y., Liu, K., Li, X. L., Yao, H. W., Li, Y., Zhou, H., Wang, L. P., Mu, D., Yin, W. W., Fang, L. Q., Yu, H. J., & Cao, W. C. (2016). Mapping the distribution of anthrax in mainland China, 2005–2013. PLoS Neglected Tropical Diseases, 10(4), e0004637.
Danilova, K. S. (1971). Geograficheskoe rasprostranenie sibirskoj yazvy v Ukrainskoy SSR [Geographic distribution of anthrax in the Ukrainian SSR]. In: Danilova, K. S. (Ed.). Aktualnye voprosy profilaktiki sibirskoj yazvy v SSSR [Topical issues of anthrax prevention in the USSR], Urozaj, Kiev. Pp. 19–20 (in Russian).
Dey, R., Hoffman, P. S., & Glomski, I. J. (2012). Germination and amplification of anthrax spores by soil-dwelling amoebas. Applied and Environmental Microbiology, 78(22), 8075–8081.
Doganay, M., & Demiraslan, H. (2015). Human anthrax as a re-emerging disease. Recent Patents on Anti-infective Drug Discovery, 10(1), 10–29.
Finke, E. J., Beyer, W., Loderstädt, U., & Frickmann, H. (2020). Review: The risk of contracting anthrax from spore-contaminated soil – A military medical perspective. European Journal of Microbiology and Immunology, 10(2), 29–63.
Hugh-Jones, M. (1999). 1996–1997 global anthrax report. Journal of Applied Microbiology, 87(2), 189–191.
Hugh-Jones, M., & Blackburn, J. (2009). The ecology of Bacillus anthracis. Molecular Aspects of Medicine, 30(6), 356–367.
Iovenko, A. V. (2004). Vplyv gruntovoho faktora na roztashuvannia statsionarno neblahopoluchnykh shchodo sybirky punktiv na terytorii pivdennoho rehionu Ukrainy [Influence of the soil factor on the location of anthrax-affected areas in the southern region of Ukraine]. Veterynarna Medytsyna Ukrainy, 11, 12–13 (in Ukrainian).
Kamal, S. M., Rashid, A. K., Bakar, M. A., & Ahad, M. A. (2011). Anthrax: An update. Asian Pacific Journal of Tropical Biomedicine, 6, 496–501.
Klietmann, W. F., & Ruoff, K. L. (2001). Bioterrorism: Implications for the clinical microbiologist. Clinical Microbiology Reviews, 14(2), 364–381.
Korniienko, L. I., Nedosiekov, V. V., Busol, V. O., Korniienko, L. M., Ushkalov, V. O., & Holovko, A. M. (2009). Sapronozni infektsiini khvoroby tvaryn [Sapronic infectious diseases of animals]. Bila Tserkva State Agrarian University, Bila Tserkva (in Ukrainian).
Korotych, A. S., & Pohrebniak, L. Y. (1976). Sybyrskaia yazva [Anthrax]. Urozhai, Kiev (in Russian).
Li, S., Ma, Q., Chen, H., Liu, Y., Yao, G., Tang, G., & Wang, D. (2020). Epidemiological investigation and etiological analysis of a cutaneous anthrax epidemic caused by butchering sick cattle in Guizhou, China. Frontiers in Public Health, 8, 65.
Li, Y., Yin, W., Hugh-Jones, M., Wang, L., Mu, D., Ren, X., Zeng, L., Chen, Q., Li, W., Wei, J., Lai, S., Zhou, H., & Yu, H. (2017). Epidemiology of human anthrax in China, 1955–2014. Emerging Infectious Diseases, 23(1), 14–21.
Lukhnova, L. Y., Izbanova, U. A., Sansyzbayev, Y. B., Meka-Mechenko, T. V., & Suschikh, V. Y. (2018). Review of epidemic, epizootic situation on splenic fever in Kazakhstan, neighbouring countries and beyond. Medicine (Almaty), 192, 40–47 (in Russian).
Makarov, V. V., & Mahamat, N. Y. (2019). Globalnaya epizootologiya sibirskoy yazvy. Zabolevaemost cheloveka kak indikator epizooticheskogo neblagopoluchiya i faktoryi riska [Global epizootology of anthrax. Human morbidity as an indicator of epizootic distress and risk factors]. Veterinariya Segodnya, 1, 63–67 (in Russian).
Makarov, V. V., Gusev, A. A., Guseva, E. V., & Suharev, O. I. (2001). Epizootologicheskiy leksikon [Epizootological lexicon]. Kolos-S, Moscow (in Russian).
Makurumidze, R., Gombe, N. T., Magure, T., & Tshimanga, M. (2021). Investigation of an anthrax outbreak in Makoni District, Zimbabwe. BMC Public Health, 21(1), 298.
Manish, M., Verma, S., Kandari, D., Kulshreshtha, P., Singh, S., & Bhatnagar, R. (2020). Anthrax prevention through vaccine and post-exposure therapy. Expert Opinion on Biological Therapy, 20(12), 1405–1425.
Munyua, P., Bitek, A., Osoro, E., Pieracci, E. G., Muema, J., Mwatondo, A., Kungu, M., Nanyingi, M., Gharpure, R., Njenga, K., & Thumbi, S. M. (2016). Prioritization of zoonotic diseases in Kenya, 2015. PloS One, 11(8), e0161576.
Parkinson, A. J., Evengard, B., Semenza, J. C., Ogden, N., Børresen, M. L., Berner, J., Brubaker, M., Sjöstedt, A., Evander, M., Hondula, D. M., Menne, B., Pshenichnaya, N., Gounder, P., Larose, T., Revich, B., Hueffer, K., & Albihn, A. (2014). Climate change and infectious diseases in the Arctic: Establishment of a circumpolar working group. International Journal of Circumpolar Health, 73, 25163.
Pittiglio, C., Shadomy, S., El Idrissi, A., Soumare, B., Lubroth, J., & Makonnen, Y. (2022). Seasonality and ecological suitability modelling for anthrax (Bacillus anthracis) in Western Africa. Animals, 12(9), 1146.
Reid, M., & Fleck, F. (2014). The immunization programme that saved millions of lives. Bulletin of the World Health Organization, 92(5), 314–315.
Revich, B., Tokarevich, N., & Parkinson, A. J. (2012). Climate change and zoonotic infections in the Russian Arctic. International Journal of Circumpolar Health, 71, 18792.
Schiffer, J. M., McNeil, M. M., & Quinn, C. P. (2016). Recent developments in the understanding and use of anthrax vaccine adsorbed: Achieving more with less. Expert Review of Vaccines, 15(9), 1151–1162.
Schmid, G., & Kaufmann, A. (2002). Anthrax in Europe: Its epidemiology, clinical characteristics, and role in bioterrorism. Clinical Microbiology and Infection, 8(8), 479–488.
Seliverstov, V., & Yaremenko, N. (2002). Sibirskaya yazva: Mify i deystvitelnost’. Svod pravil soblyudaetsya [Anthrax: Myths and reality. Code of practice enforced]. Veterinarnaya Gazeta, 220, 4–5 (in Russian).
Stella, E., Mari, L., Gabrieli, J., Barbante, C., & Bertuzzo, E. (2020). Permafrost dynamics and the risk of anthrax transmission: A modelling study. Scientific Reports, 10(1), 16460.
Tarshis, M. (1996). Pochva i "pochvennyie" infektsii [Soil and "soils" infections]. Veterinarnaya Gazeta, 102, 3 (in Russian).
Timofeev, V. S., Bahteeva, I. V., Titareva, G. M., Goncharova, Y. O., & Dyatlov, I. A. (2021). Puti rasprostraneniya sibirskoy yazvy v prirodnykh ekosistemakh [The ways of spreading anthrax in natural ecosystems]. Problemy Osobo Opasnykh Infektsiy, 3, 23–32 (in Russian).
Vergnaud, G. (2020). Bacillus anthracis evolutionary history: Takingadvantage of the topology of the phylogenetic tree and of human history to propose dating points. Erciyes Medical Journal, 42(4), 362–369.
Walsh, M. G., de Smalen, A. W., & Mor, S. M. (2018). Climatic influence on anthrax suitability in warming northern latitudes. Scientific Reports, 8(1), 9269.
Webb, G. F. (2003). A silent bomb: The risk of anthrax as a weapon of mass destruction. Proceedings of the National Academy of Sciences of the United States of America, 100(8), 4355–4356.
Yamtitina, M. N., & Makarov, V. V. (2018). Globalnaya epizootologiya sibirskoy yazvyi. Vospriimchivyie zhivotnyie [Global epizootology of anthrax. Susceptible animals]. Veterinariya Segodnya, 4, 49–52 (in Russian).

This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons «Attribution» 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.