Dissimilatory reduction of sulfate, nitrate and nitrite ions by bacteria Desulfovibrio sp. under the influence of potassium dichromate

  • O. M. Moroz Ivan Franko National University of Lviv
  • S. O. Hnatush Ivan Franko National University of Lviv
  • G. V. Yavorska Ivan Franko National University of Lviv
  • G. I. Zvir Ivan Franko National University of Lviv


In the process of anaerobic respiration, sulfate reducing bacteria, besides sulfates, can use other electron acceptors: nitrates, nitrites, oxidized forms of heavy metals, in particular, hexavalent chromium, which are harmful for organisms. Selection of pollutant-resistant stains of this kind of bacteria isolated from technogenically altered ecotopes, capable of reductive transformation of various nature pollutants, is an especially relevant task for the creation of new effective remediation biotechnologies. The purpose of this work was to investigate the regularities of usage of sulfate, nitrate or nitrite ions by bacteria of the Desulfovibrio genus, isolated from Yavorivske Lake, at conditions of simultaneous presence in the medium of another electron acceptor – Cr(VI), to establish a succession of electron acceptors’ reduction by investigated sulfidogenic bacteria and to evaluate the efficiency of their possible application in technologies of complex purification of the environment from metal, sulfur and nitrogen compounds. Bacteria were grown under anaerobic conditions for 10 days in Kravtsov-Sorokin medium without Mohr’s salt. To study the efficiency of sulfate, nitrate, or nitrite ions’ reduction at simultaneous presence in the medium of Cr(VI), bacteria were sown in media with Na2SO4×10H2O, NaNO3, NaNO2 or K2Cr2O7 to final SO42–, NO3–, NO2– or Cr(VI) concentration in the medium of 3.47 (concentration of SO42– in medium of standard composition) or 1.74, 3.47, 5.21, 6.94, 10.41 mM. Biomass was determined turbidimetrically, and the concentrations of sulfate, nitrate, nitrite, ammonium ions, hydrogen sulfide, Cr(VI), Cr(ІІІ) in cultural liquid were determined by spectrophotometric method. It has been established that Cr(VI) inhibits the biomass accumulation, sulfate ions’ reduction and hydrogen sulfide production by Desulfovibrio sp. after simultaneous introduction into the medium of 3.47 mM SO42– and 1.74–10.41 mM Cr(VI). In the medium with the same initial content (3.47 mM) of SO42– and Cr(VI), bacteria reduced 2.1–2.3 times more Cr(VI) than sulfate ions with Cr(III) production at concentrations up to 2.2 times higher than hydrogen sulfide. It has been shown that K2Cr2O7 inhibits the biomass accumulation, the nitrate ions reduction and the ammonium ions production by bacteria after simultaneous addition into the medium of 3.47 mM NO3– and 1.74–10.41 mM Cr(VI) or 1.74–10.41 mM NO3– and 3.47 mM Cr(VI). In the medium with the same initial content (3.47 mM) of NO3– and Cr(VI) bacteria reduced 1.1–1.3 times more nitrate ions than Cr(VI) with the production of ammonium ions at concentrations up to 1.3 times higher than that of Cr(III). It has been established that K2Cr2O7 inhibits the biomass accumulation, the nitrite ions’ reduction and the ammonium ions’ production by bacteria after simultaneous addition into the medium of 3.47 mM NO2– and 1.74–10.41 mM Cr(VI) or 1.74–10.41 mM NO2– and 3.47 mM Cr(VI). In the medium with the same initial content (3.47 mM) NO2– and Cr(VI) the reduction of Cr(VI) by bacteria practically did not differ from the reduction of nitrite ions (was only slightly lower – up to 1.1 times), almost the same concentrations of trivalent chromium and ammonium ions in the cultural liquid were detected. The processes of nitrate and nitride reduction, carried out by bacteria of Desulfovibrio genus, were revealed to be less sensitive to the negative influence of sodium dichromate, as compared with the process of sulfate ions’ reduction, which in the medium with 3.47 mM SO42– and 1.74–10.41 mM Cr(VІ) decreased by 3.2–4.6 times as compared with this process in the medium with only Na2SO4×10H2O. The investigated strains of bacteria are adapted to high concentrations of toxic pollutants (up to 10.41 mM) and therefore are promising for application in technologies of complex environment purification from hexavalent chromium, sulfur and nitrogen compounds.


Abdulina, D. R., Purish, L. M., & Iutynska, G. O. (2018). Microbial communities and sulfate-reducing bacteria in soils near main-gas pipeline. Mikrobiolohichnyi Zhurnal, 80(5), 3–14.

Aguilar-Barajas, E., Diaz-Perez, C., Ramirez-Diaz, M. I., Riveros-Rosas, H., & Cervantes, C. (2011). Bacterial transport of sulfate, molybdate, and related oxyanions. Biometals, 24, 687–707.

Barton, L. L., Tomei-Torres, F. A., Xu, H., & Zocco, T. (2015). Metabolism of metals and metalloids by the sulfate-reducing bacteria. In: Saffarini, D. (Ed.). Bacteria-metal interactions. Springer International Publishing, Switzerland. Pp. 57−83.

Basniwal, R. K., Singh, N. J., Kumar, M., Kumar, V., Tuteja, N., Varma, A., & Goyal, P. (2017). Biotransformation of xenobiotic compounds: Microbial approach. In: Hashmi, M., Kumar, V., & Varma, A. (Eds.). Xenobiotics in the soil environment: Monitoring, toxicity and management. Springer, Cham. Pp. 335–345.

Belchik, S. M., Kennedy, D. W., Dohnalkova, A. C., Wang, Y. M., Sevinc, P. C., Wu, H., Lin, Y. H., Lu, H. P., Fredrickson, J. K., & Shi, L. (2011). Extracellular reduction of hexavalent chromium by cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Applied and Environmental Microbiology, 77(12), 4035–4041.

Bokranz, M. J., Katz, J., Schröder, I., Roberton, A. M., & Kröger, A. (1983). Energy metabolism and biosynthesis of Vibrio succinogenes growing with nitrate or nitrite as terminal electron acceptor. Archives of Microbiology, 135, 36–41.

Breuer, M. Rosso, K. M., Blumberger, J., & Butt, J. N. (2015). Multi-haem cytochromes in Shewanella oneidensis MR-1: Structures, functions and opportunities. The Journal of the Royal Society Interface, 12(102), 20141117.

Caballero-Flores, G. G., Costa-Navarrete, Y. M., Ramirez-Diaz, M. I., Silva-Sanchez, J., & Cervantes, C. (2012). Chromate-resistance genes in plasmids from antibiotic-resistant nosocomial enterobacterial isolates. FEMS Microbiology Letters, 327(2), 148–154.

Cadby, I. T., Faulkner, M., Cheneby, J., Long, J., van Helden, J., Dolla, A., & Cole, J. A. (2017). Coordinated response of the Desulfovibrio desulfuricans 27774 transcriptome to nitrate, nitrite and nitric oxide. Scientific Reports, 7, 16228.

Camargo, J., & Alonso, A. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environment International, 32(6), 831–849.

Сhayka, O. M., & Peretyatko, T. B. (2018). The reduction of hexavalent chromium and nitrates by Desulfuromonas sp. YSDS-3, isolated from the soil of Yasiv sulfur mine. Ecology and Noospherology, 29(2), 76–82.

Fitzgerald, L. A., Petersen, E. R., Leary, D. H., Nadeau, L. J., Soto, C. M., Ray, R. I., Little, B. J., Ringeisen, B. R., Johnson, G. R., Vora, G. J., & Biffinger, J. C. (2013). Shewanella frigidimarina microbial fuel cells and the influence of divalent cations on current output. Biosensors and Bioelectronics, 40(1), 102–109.

Gescher, J., & Kappler, A. (2012). Microbial metal respiration: From geochemistry to potential applications. Springer-Verlag, Berlin, Heidelberg.

Granger, D. L., Taintor, R. R., Boockvar, K. S., & Hibbs, J. B. (1996). Measurement of nitrate and nitrite in biological samples using nitrate reductase and Griess reaction. Methods Enzymology, 268, 142–151.

Gudz, S. P., Нnatush, S. O., Yavorska, G. V., Bilinska, I. S., & Borsukevych, B. M. (2014). Praktykum z mikrobiologiji [Workshop on microbiology]. Ivan Franko National University of Lviv, Lviv (in Ukrainian).

Gudz, S. P., Peretiatko, T. B., Moroz, O. M., Hnatush, S. O., & Klym, I. R. (2011). Rehulyuvannya rivnya sul'fativ, sirkovodnyu ta vazhkykh metaliv u tekhnohennykh vodoymakh sulfatvidnovljuval’nymy bakterijamy [Regulation of sulfates, hydrogen sulfide and heavy metal level in technogenic reservoirs by sulfate-reducing bacteria]. Mikrobiolohichnyi Zhurnal, 73(2), 33–38 (in Ukrainian).

Hnatush, S., & Maslovska, O. (2018). Sulfur-reducing bacteria Desulfuromonas acetoxidans ІМV В-7384 under the influence of heavy metal ions. The Development of Natural Sciences. Izdevnieciba Baltija Publishing, Riga.

Hoffmann, M. C., Pfänder, Y., Tintel, M., & Masepohl, B. (2017). Bacterial PerO permeases transport sulfate and related oxyanions. Journal of Bacteriology, 199(14), e00183-17.

Jing, X., Wu, Y., Shi, L., Peacock, C. L., Ashry, N. M., Gao, C., Huang, Q., & Cai, P. (2020). Outer membrane c-type cytochromes OmcA and MtrC play distinct roles in enhancing the attachment of Shewanella oneidensis MR-1 cells to goethite. Applied and Environmental Microbiology, 86(23), e01941-20.

Keith, S. M., & Herbert, R. A. (1983). Dissimilatory nitrate reduction by a strain of Desulfovibrio desulfuricans. FEMS Microbiology Letters, 18, 55–59.

Kiran, M. G., Pakshirajan, K., & Das, G. (2017). Heavy metal removal from multicomponent system by sulfate reducing bacteria: Mechanism and cell surface characterization. Journal of Hazardous Materials, 324, 62–70.

Kozlova, I. P., Radchenko, O. S., Stepura, L. H., Kondratyuk, T. O., & Pilyashenko-Novokhatnyy, A. I. (2008). Heokhimichna diyalnist mikroorhanizmiv ta yiyi prykladni aspekty [Geochemical activity of microorganisms and its applied aspects]. Naukova Dumka, Kyiv (in Ukrainian).

Kuypers, M., Marchant, H., & Kartal, B. (2018). The microbial nitrogen-cycling network. Nature Reviews Microbiology, 16(5), 263–276.

Kuzmishyna-Diakiv, S., & Hnatush, S. (2015). Microbiota of the coal pits waste heaps. OmniScriptum GmbH & Co. KG, Lambert Academic Publishing, Saarbrücken.

Kuznetsov, A., Gradova, N., Lushnikov, S., Éngelkhart, M., Vaysser, T., & Chebotareva, M. (2015). Prikladnaya ehkobiotekhnologiya [Applied Ecobiotechnology]. Binom, Laboratoriya Znanij, Moscow (in Russian).

Lengeler, J., Drevs, G., & Shlegel, G. (Eds.). (2005). Sovremennaya mikrobiologiya. Prokarioty [Contemporary Microbiology. Prokaryotes]. Mir, Moscow (in Russian).

Li, X., Lan,S. M., Zhu, Z. P., Zhang, C., Zeng, G. M., Liu, Y. G., Cao, W. C., Song, B., Yang, H., Wang, S. F., & Wu, S. H. (2018). The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review. Ecotoxicology and Environmental Safety, 158, 162–170.

Mandich, N. V. (1997). Chemistry and theory of chromium deposition: Part I – Chemistry. Plating and Surface Finishing, 84(5), 108–115.

Marietou, A., Griffiths, L., & Cole, J. (2009). Preferential reduction of the thermodynamically less favorable electron acceptor, sulfate, by a nitrate-reducing strain of the sulfate-reducing bacterium Desulfovibrio desulfuricans 27774. Journal of Bacteriology, 191(3), 882–889.

McKinlay, J. B., Cook, G. M., & Hards, K. (2020). Microbial energy management – a product of three broad tradeoffs. In: Poole, R. K. (Ed.). Advances in microbial physiology. Academic Press. Pp. 139–185.

Mitchell, G. J., Jones, J. G., & Cole, J. A. (1986). Distribution and regulation of nitrate and nitrite reduction by Desulfovibrio and Desulfotomaculum species. Archives of Microbiology, 144(1), 35–40.

Morozkina, E. V., & Zvyagilskaya, R. A. (2007). Nitrate reductases: Structure, functions, and effect of stress factors. Biochemistry, 72(10), 1151–1160.

Moroz, O. M., Hnatush, S. O., Bohoslavets, C. I., Hrytsun, T. M., & Borsukevych, B. M. (2017a). Vplyv kaliy bikhromatu na dysymilyatsiyne vidnovlennya yoniv sul’fatu i nitratu bakteriyamy Desulfovibrio sp.[The influence of potassium dichromate on dissimilatory reduction of sulfate and nitrate ions by bacteria Desulfovibrio sp.]. Ecology and Noospherology, 28, 84–95 (in Ukrainian).

Moroz, O. M., Hnatush, S. O., Bohoslavets, C. I., Yavorska, G. V., Zvir, G. I., & Borsukevych, B. M. (2017b). Vplyv kaliy bikhromatu na deyaki fiziologichni osoblyvosti bakterij tsyklu sul’furu ozera Yavorivs’ke [The influence of potassium dichromate on some physiological features of sulfur cycle bacteria of Yavorivske Lake]. Visnyk of Lviv University, Biological Series, 75, 127–139 (in Ukrainian).

Moroz, O., Hnatush, S., Bohoslavets, C., Yavorska, G., & Borsukevych, B. (2016). Vidnovlennya sulfat-, nitrat- i nitryt-joniv bakteriyamy rodu Desulfovibrio za vplyvu spoluk ferumu (III), khromu (VI) ta manhanu (IV) [Sulfate, nitrate and nitrite ions reduction by bacteria of Desulfovibrio genus under the influence of ferrum (ІІІ), chrome (VI) and manganese (ІV) compounds]. Visnyk of Lviv University, Biological Series, 71, 190–205 (in Ukrainian).

Moroz, O. M., Hnatush, S. O., Tarabas, O. V., Bohoslavets, C. I., Yavorska, G. V., & Borsukevych, B. M. (2018). Sulfidogenna aktyvnist’ sulfatvidnovljuval’nyh i sirkovidnovljuval’nyh bakterij za vplyvu spoluk metaliv [Sulfidogenic activity of sulfate and sulfur reducing bacteria under the influence of metal compounds]. Biosystems Diversity, 26(1), 3–10 (in Ukrainian).

Moroz, O. M. (2013). Metal salts influence on nitrates reduction by sulfate-reducing bacteria. Studia Biologica, 7(2), 47–56.

Moroz, O. M. (2010). Zakonomirnosti utvorennya sirkovodnyu sul’fatvidnovlyuval’nymy bakteriyamy vodoymy kar’yeru Yavorivs’koho sirkovoho rodovyshcha [Regularities of hydrogen sulfide production by sulfate reducing bacteria from water of Yavoriv sulfur deposit open pit]. Naukovyj Visnyk Uzhhorods’koho Universytetu, Seriya Biolohiya, 27, 56–63 (in Ukrainian).

Mustapha, M. U., & Halimoon, N. (2015). Screening and isolation of heavy metal tolerant bacteria in industrial effluent. Procedia Environmental Sciences, 30, 33–37.

Peretyatko, T. B., Нnatush, S. O., & Gudz, S. P. (2006). Sul’fatvidnovlyuval’ni bakteriyi vodojm Yavorivs’kogo sirkovogo rodovyshha [Sulfate-reducing bacteria from water of Yavoriv sulfur deposit]. Mikrobiolohichnyi Zhurnal, 68(5), 87−93 (in Ukrainian).

Peretyatko, T. B., & Gudz, S. P. (2011). Zdatnist’ sul’fatvidnovlyuval’nych bakterij Desulfovibrio desulfuricans Ya-11 i Desulfobacter sp. vykorystovuvaty nitrat yak akceptor elektroniv [The ability of sulfate-reducing bacteria Desulfovibrio desulfuricans Ya-11 and Desulfobacter sp. to use nitrate as electron acceptor]. Studia Biologica, 5(2), 51–60 (in Ukrainian).

Prokhorova, A., Sturm-Richter, K., Doetsch, A., & Gescher, J. (2017). Resilience, dynamics and interactions within a multi-species exoelectrogenic model biofilm community. Applied and Environmental Microbiology, 83(6), e03033–e03016.

Richter, K., Schicklberger, M., & Gescher, J. (2012). Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Applied and Environmental Microbiology, 78(4), 913–921.

Rosenberg, E., DeLong, E. F., Lory, S., Stackebrandt, E., & Thompson, F. (Eds.). (2014). The procaryotes. Prokaryotic physiology and biochemistry. Springer-Verlag, Berlin, Heidelberg.

Simonte, F., Sturm, G., Gescher, J., & Sturm-Richter, K. (2017). Extracellular electron transfer and biosensors. In: Advances in Biochemical Engineering / Biotechnology. Heidelberg: Springer, Berlin.

Sobol, Z., & Schiestl, R. H. (2012). Intracellular and extracellular factors influencing Cr (VI) and Cr (III) genotoxicity. Environmental and Molecular Mutagenesis, 53, 94–100.

Tarabas, O., Moroz, O., Hnatush, S., Yavorska, G., Zvir, G., & Kovalchuk, M. (2017). Ekoloho-trofichni hrupy mikroorhanizmiv vody ozera Yavorivs’ke [Ecological trophic groups of microorganisms of Yavorivske lake water]. Visnyk of L’viv University, Biological Series, 76, 166–178 (in Ukrainian).

Teng, Y., Xu, Y., Wang, X., & Christie, P. (2019). Function of biohydrogen metabolism and related microbial communities in environmental bioremediation. Frontiers in Microbiology, 10, 106.

Viti, C., Marchi, E., Decorosi, F., & Giovannetti, L. (2014). Molecular mechanisms of Cr (VI) resistance in bacteria and fungi. FEMS Microbiology Reviews, 38(4), 633–659.

Xia, X., Zhang, S., Li, S., Zhang, L., Wang, G., Zhang, L., Wang, J., & Li, Z. (2018). The cycle of nitrogen in river systems: Sources, transformation, and flux. Environmental Science: Processes and Impacts, 20, 863–891.

Yan, J., Ye, W., Jian, Z., Xie, J., Zhong, K., Wang, S., Hu, H., Chen, Z., Wen, H., & Zhang, H. (2018). Enhanced sulfate and metal removal by reduced graphene oxide self-assembled Enterococcus avium sulfate-reducing bacteria particles. Bioresource Technology, 266, 447–453.

How to Cite
Moroz, O. M., Hnatush, S. O., Yavorska, G. V., & Zvir, G. I. (2022). Dissimilatory reduction of sulfate, nitrate and nitrite ions by bacteria Desulfovibrio sp. under the influence of potassium dichromate . Regulatory Mechanisms in Biosystems, 13(1), 23-37. https://doi.org/10.15421/022204