Low doses of imidacloprid induce disruption of intercellular adhesion and initiate proinflammatory changes in Caco-2 cells

  • V. S. Nedzvetsky Bingöl University
  • D. M. Masiuk Dnipro State Agrarian and Economic University
  • V. Y. Gasso Oles Honchar Dnipro National University
  • S. V. Yermolenko Oles Honchar Dnipro National University
  • A. O. Huslystyi Oles Honchar Dnipro National University
  • V. A. Spirina Oles Honchar Dnipro National University
Keywords: neonicotinoids; TNF-α; iNOS; occludin; E-cadherin; intestine barrier function.

Abstract

Imidacloprid is the most widely used pesticide of the neonicotinoid class. Neonicotinoid toxicities against various insects are well known. Nevertheless, there are rising evidences that neonicotinoids exert cytotoxic effects on different non-target organisms including mammals, fish, birds etc. Besides, depending on pesticide application, the exposed plants absorb some part of used neonicotinoids and their residues are detected in agricultural products worldwide. Thus, the continuous consumption of fruits and vegetables contaminated with neonicotinoids is a high risk factor for humans despite the low doses. Intestine epithelial cells are the first targets of the neonicotinoid cytotoxicity in humans because of its direct way of administration. The epithelial cells provide the barrier function of the intestinal system via specialized intercellular adhesion. The effects of imidacloprid on the intestine barrier function and inflammatory cytokines production are still unknown. In the present study, we exposed the human Caucasian colon adenocarcinoma (Caco-2) epithelial cells to low doses (0.10–0.75 µg/mL) of imidacloprid in order to assess the expression of tight and adherens junctions proteins, occludin and E-cadherin, and production of proinflammatory cytokine TNF α and iNOS. Imidacloprid induced dose-dependent decline in both occludin and E-cadherin levels. By contrast, TNF-α and iNOS contents were upregulated in imidacloprid-exposed Caco-2 cells. Decrease in tight and adherens junctions proteins indicates that the barrier function of intestine epithelial cells could be damaged by imidacloprid administration. In addition, TNF-α and iNOS upregulation indicates that imidacloprid is potent to activate proinflammatory response in enterocytes. Thus, imidacloprid can affect intestine barrier function through the increase of proinflammatory cytokine production and decrease in adhesiveness of enterocytes. The further assessment of the role of adhesion proteins and inflammatory cytokines in neonicotinoid pesticide cytotoxicity as it affects enterocyte barrier function is required to highlight the risk factor of use of neonicotinoids.

References

Abdel salam, M. E., Elawady, E. H., Khater, A. S., Eweda, S. A., & Abd El Moneam, M. H. (2021). Neuropsychiatric sequelae of acute carbon monoxide poisoning: The predictive role of neuron specific enolase and glial fibrillary acidic protein. NeuroToxicology, 85, 115–120.

Al-Sadi, R., Khatib, K., Guo, S., Ye, D., Youssef, M., & Ma, T. (2011). Occludin regulates macromolecule flux across the intestinal epithelial tight junction barrier. American Journal of Physiology. Gastrointestinal and Liver Physiology, 300(6), 1054–1064.

Banks, W. A., Gray, A. M., Erickson, M. A., Salameh, T. S., Damodarasamy, M., Sheibani, N., Meabon, J. S., Wing, E. E., Morofuji, Y., Cook, D. G., & Reed, M. J. (2015). Lipopolysaccharide-induced blood-brain barrier disruption: Roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit. Journal of Neuroinflammation, 12, 223.

Bartle, E. I., Rao, T. C., Beggs, R. R., Dean, W. F., Urner, T. M., Kowalczyk, A. P., & Mattheyses, A. L. (2020). Protein exchange is reduced in calcium-independent epithelial junctions. Journal of Cell Biology, 219(6), e201906153.

Buonpane, C., Yuan, C., Wood, D., Ares, G., Klonoski, S. C., & Hunter, C. J. (2020). ROCK1 inhibitor stabilizes E-cadherin and improves barrier function in experimental necrotizing enterocolitis. American Journal of Physiology – Gastrointestinal and Liver Physiology, 318(4), 781–792.

Busch, M., Bredeck, G., Kämpfer, A. A. M., & Schins, R. P. F. (2021). Investigations of acute effects of polystyrene and polyvinyl chloride micro- and nanoplastics in an advanced in vitro triple culture model of the healthy and inflamed intestine. Environmental Research, 193, 110536.

Chang, C. H., MacIntosh, D., Lemos, B., Zhang, Q., & Lu, C. (2018). Characterization of daily dietary intake and the health risk of neonicotinoid insecticides for the U.S. population. Journal of Agricultural and Food Chemistry, 66(38), 10097–10105.

Chao, L. S., & Casida, J. E. (1997). Interaction of imidacloprid metabolites and analogs with the nicotinic acetylcholine receptor of mouse brain in relation to toxicity. Pesticide Biochemistry and Physiology, 58(1), 77–88.

Chen, C. J., Ou, Y. C., Lin, S. Y., Liao, S. L., Chen, S. Y., & Chen, J. H. (2006). Manganese modulates proinflammatory gene expression in activated glia. Neurochemistry International, 49(1), 62–71.

Chen, Q., Chen, O., Martins, I. M., Hou, H., Zhao, X., Blumberg, J. B., & Li, B. (2017). Collagen peptides ameliorate intestinal epithelial barrier dysfunction in immunostimulatory Caco-2 cell monolayers via enhancing tight junctions. Food and Function, 8(3), 1144–1151.

Coopman, P., & Alexandre, A. (2016). Adherens junction and E-cadherin complex regulation by epithelial polarity. Cellular and Molecular Life Sciences, 73(18), 3535–3553.

Fernandes, E. F. A., & Özcelik, D. (2021). Imaging biomarkers for monitoring the inflammatory redox landscape in the brain. Antioxidants, 10, 528.

 

436

Fischer, A., Gluth, M., Pape, U.-F., Wiedenmann, B., Theuring, F., & Baumgart, D. C. (2013). Adalimumab prevents barrier dysfunction and antagonizes distinct effects of TNF-α on tight junction proteins and signaling pathways in intestinal epithelial cells. American Journal of Physiology. Gastrointestinal and Liver Physiology, 304(11), 970–979.

 

Gasso, V. Y., Hahut, A. N., Yermolenko, S. V., Hasso, I. A., Agca, C. A., Sukharenko, E. V., & Nedzvetsky, V. S. (2020a). Local industrial pollution induces astrocyte cytoskeleton rearrangement in the dice snake brain: GFAP as a biomarker. Biosystems Diversity, 28(3), 250–256.

Gasso, V., Yermolenko, S., Bobyliov, Y., Hahut, A., Huslystyi, A., Hasso, I., & Petrushevskyi, V. (2020b). Biomarkers of the influence of pyrethroids and neonicotinoids on amphibian larvae. Ecology and Noospherology, 31(1), 46–51 (in Ukrainian).

Gitter, A. H., Bendfeldt, K., Schmitz, H., Schulzke, J. D., Bentzel, C. J., & Fromm, M. (2000a). Epithelial barrier defects in HT-29/B6 colonic cell monolayers induced by tumor necrosis factor-alpha. Annals of the New York Academy of Sciences, 915, 193–203.

Gitter, A. H., Bendfeldt, K., Schulzke, J. D., & Fromm, M. (2000b). Leaks in the epithelial barrier caused by spontaneous and TNF-alpha-induced single-cell apoptosis. The FASEB Journal, 14(12), 1749–1753.

Grothaus, J. S., Ares, G., Yuan, C., Wood, D. R., & Hunter, C. J. (2018). Rho kinase inhibition maintains intestinal and vascular barrier function by upregulation of occludin in experimental necrotizing enterocolitis. American Journal of Physiology – Gastrointestinal and Liver Physiology, 315(4), 514–528.

Harrer, A., Bücker, R., Boehm, M., Zarzecka, U., Tegtmeyer, N., Sticht, H., Schulzke, J. D., & Backert, S. (2019). Campylobacter jejuni enters gut epithelial cells and impairs intestinal barrier function through cleavage of occludin by serine protease HtrA. Gut Pathogens, 11, 4.

Hartsock, A., & Nelson, W. J. (2008). Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Biochimica et Biophysica Acta, 1778(3), 660–669.

Hernandez, J., Volland, A., Leyshon, B. J., Juda, M., Ridlon, J. M., Johnson, R. W., & Steelman, A. J. (2018). Effect of imidacloprid ingestion on immune responses to porcine reproductive and respiratory syndrome virus. Scientific Reports, 8(1), 11615.

Hong, Y., Huang, Y., Wu, S., Yang, X., Dong, Y., Xu, D., & Huang, Z. (2020). Effects of imidacloprid on the oxidative stress, detoxification and gut microbiota of Chinese mitten crab, Eriocheir sinensis. Science of the Total Environment, 729, 138276.

Huang, A., van den Brink, N. W., Buijse, L., Roessink, I., & van den Brink, P. J. (2021). The toxicity and toxicokinetics of imidacloprid and a bioactive metabolite to two aquatic arthropod species. Aquatic Toxicology, 235, 105837.

Huang, H., Wright, S., Zhang, J., & Brekken, R. A. (2019). Getting a grip on adhesion: Cadherin switching and collagen signaling. Biochimica et Biophysica Acta – Molecular Cell Research, 1866(11), 118472.

Hülsken, J., Birchmeier, W., & Behrens, J. (1994). E-cadherin and APC compete for the interaction with beta-catenin and the cytoskeleton. Journal of Cell Biology, 127(6), 2061–2069.

Koz, S. T., Baydas, G., Koz, S., Demir, N., & Nedzvetsky, V. S. (2011). Gingko biloba extract inhibits oxidative stress and ameliorates impaired glial fibrillary acidic protein expression, but can not improve spatial learning in offspring from hyperhomocysteinemic rat dams. Phytotherapy Research, 26(7), 949–955.

Kozak, V. M., Romanenko, E. R., & Brygadyrenko, V. V. (2020). Influence of herbicides, insecticides and fungicides on food consumption and body weight of Rossiulus kessleri (Diplopoda, Julidae). Biosystems Diversity, 28(3), 272–280.

Kuo, W.-T., Shen, L., Zuo, L., Shashikanth, N., Ong, M. L. D. M., Wu, L., Zha, J., Edelblum, K. L., Wang, Y., Wang, Y., Nilsen, S. P., & Turner, J. R. (2019). Inflammation-induced occludin downregulation limits epithelial apoptosis by suppressing caspase-3 expression. Gastroenterology, 157(5), 1323–1337.

Lansdell, S. J., & Millar, N. S. (2000). The influence of nicotinic receptor subunit composition upon agonist, alpha-bungarotoxin and insecticide (imidacloprid) binding affinity. Neuropharmacology, 39(4), 671–679.

Latli, B., D’Amour, K., & Casida, J. E. (1999). Novel and potent 6-chloro3-pyridinyl ligands for the alpha4beta2 neuronal nicotinic acetylcholine receptor. Journal of Medicinal Chemistry, 42(12), 2227–2234.

Le, T.-H., Alassane-Kpembi, I., Oswald, I. P., & Pinton, P. (2018). Analysis of the interactions between environmental and food contaminants, cadmium and deoxynivalenol, in different target organs. Science of the Total Environment, 622–623, 841–848.

Li, H., Hu, J., Xin, W., & Zhao, B. (2000). Production and interaction of oxygen and nitric oxide free radicals in PMA stimulated macrophages during the respiratory burst. Redox Report, 5(6), 353–358.

Liu, M. Y., & Casida, J. E. (1993). High affinity binding of [3H]-imidacloprid in the insect acetylcholine receptor. Pesticide Biochemistry and Physiology, 46(1), 40–46.

Luo, S., Terciolo, C., Bracarense, A. P. F. L., Payros, D., Pinton, P., & Oswald, I. P. (2019). In vitro and in vivo effects of a mycotoxin, deoxynivalenol, and a trace metal, cadmium, alone or in a mixture on the intestinal barrier. Environment International, 132, 105082.

Ma, T. Y., Boivin, M. A., Ye, D., Pedram, A., & Said, H. M. (2005). Mechanism of TNF-{alpha} modulation of Caco-2 intestinal epithelial tight junction barrier: Role of myosin light-chain kinase protein expression. American Journal of Physiology – Gastrointestinal and Liver Physiology, 288(3), 422–430.

Ma, T. Y., Iwamoto, G. K., Hoa, N. T., Akotia, V., Pedram, A., Boivin, M. A., & Said, H. M. (2004). TNF-alpha-induced increase in intestinal epithelial tight junction permeability requires NF-kappa B activation. American Journal of Physiology – Gastrointestinal and Liver Physiology, 286(3), 367–376.

Markwell, M. A., Haas, S. M., Bieber, L. L., & Tolbert, N. E. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemistry, 87, 206–210.

McKay, D. M., & Singh, P. K. (1997). Superantigen activation of immune cells evokes epithelial (T84) transport and barrier abnormalities via IFN-gamma and TNF alpha: Inhibition of increased permeability, but not diminished secretory responses by TGF-beta2. The Journal of Immunology, 159(5), 2382–2390.

Nedzvetskii, V. S., Kirichenko, S. V., Baydas, G., & Nerush, O. P. (2012). Effects of melatonin on memory and learning deficits induced by exposure to thinner. Neurophysiology/Neirofiziologiya, 44(1), 42–48.

Nie, N., Bai, C., Song, S., Zhang, Y., Wang, B., & Li, Z. (2020). Bifidobacterium plays a protective role in TNF-α-induced inflammatory response in Caco-2 cell through NF-κB and p38MAPK pathways. Molecular and Cellular Biochemistry, 464, 83–91.

Okazawa, A., Nakagawa, Y., Akamatsu, M., Ueno, T., & Nishimura, K. (2000). Comparison of the binding activites of chloronicotinyl insecticides toward the nicotinic acetylcholine receptors from rats and houseflies. Journal of Pesticide Science, 25(1), 40–43.

Özdemir, S., Altun, S., & Arslan, H. (2017). Imidacloprid exposure cause the histopathological changes, activation of TNF-alpha, iNOS, 8-OHdG biomarkers, and alteration of caspase 3, iNOS, CYP1A, MT1 gene expression levels in common carp (Cyprinus carpio L.). Toxicology Reports, 5, 125–133.

Pinton, P., Nougayrède, J. P., Del Rio, J. C., Moreno, C., Marin, D. E., Ferrier, L., Bracarense, A. P., Kolf-Clauw, M., & Oswald, I. P. (2009). The food contaminant deoxynivalenol, decreases intestinal barrier permeability and reduces claudin expression. Toxicology and Applied Pharmacology, 237(1), 41–48.

Rawat, M., Nighot, M., Al-Sadi, R., Gupta, Y., Viszwapriya, D., Yochum, G., Koltun, W., & Ma, T. Y. (2020). IL1B increases intestinal tight junction permeability by up-regulation of MIR200C-3p, which degrades occludin mRNA. Gastroenterology, 159(4), 1375–1389.

Reddy, Y. P., Tiwari, S., Tomar, L. K., Desai, N., & Sharma, V. K. (2021). Fluoride-ınduced expression of neuroinflammatory markers and neurophysiological regulation in the brain of wistar rat model. Biological Trace Element Research, 199(7), 2621–2626.

Schulz-Jander, D. A., Leimkuehler, W. M., & Casida, J. E. (2002). Neonicotinoid insecticides: Reduction and cleavage of imidacloprid nitroimine substituent by liver microsomal and cytosolic enzymes. Chemical Research in Toxicology, 15(9), 1158–1165.

Schulz-Jander, D. A., & Casida, J. E. (2002). Imidacloprid insecticide metabolism: Human cytochrome P450 isozymes differ in selectivity for imidazolidine oxidation versus nitroimine reduction. Toxicology Letters, 132(1), 65–70.

Shen, K., Jia, Y., Wang, X., Zhang, J., Liu, K., Wang, J., Cai, W., Li, J., Li, S., Zhao, M., Wang, Y., & Hu, D. (2021). Exosomes from adipose-derived stem cells alleviate the inflammation and oxidative stress via regulating Nrf2/HO-1 axis in macrophages. Free Radical Biology and Medicine, 165, 54–66.

Shiyntum, H. N., Dovban, O. O., Kovalchuk, Y. P., Yaroshenko, T. Y., & Ushakova, G. A. (2017). Corvitin restores metallothionein and glial fibrillary acidic protein levels in rat brain affected by pituitrin-izadrin. The Ukrainian Biochemical Journal, 89(3), 36–45.

Spande, T. F., Garraffo, H. M., Yeh, H. J. C., Pu, Q. L., Pannell, L. K., & Daly, J. W. (1992). A new class of alkaloids from a dendrobatid poison frog – a structure for alkaloid-251f. Journal of Natural Products, 55(6), 707–722.

Stanley, J., & Preetha, G. (2016). Pesticide toxicity to non-target organisms. Springer, New York.

Suchail, S., Guez, D., & Belzunces, L. P. (2001). Discrepancy between acute and chronic toxicity induced by imidacloprid and its metabolites in Apis mellifera. Environmental Toxicology and Chemistry, 20(11), 2482–2486.

Tomizawa, M., & Casida, J. E. (1999). Minor structural changes in nicotinoid insecticides confer differential subtype selectivity for mammalian nicotinic acetylcholine receptors. British Journal of Clinical Pharmacology, 127(1), 115–122.

Tomizawa, M., & Casida, J. E. (2003). Selective toxicity of neonicotinoids attribut able to specificity of insect and mammalian nicotinic receptors. Annual Review of Entomology, 48, 339–364.

Tomizawa, M., & Yamamoto, I. (1993). Structure-activity relationships of nicotinoids and imidacloprid analogs. Journal of Pesticide Science, 18(1), 91–98.

Tomizawa, M., Lee, D. L., & Casida, J. E. (2000). Neonicotinoid insecticides: Molecular features conferring selectivity for insect versus mammalian nicotinic receptors. Journal of Agricultural and Food Chemistry, 48(12), 6016–6024.

Ulluwishewa, D., Anderson, R. C., McNabb, W. C., Moughan, P. J., & Wells, J. M. (2011). Regulation of tight junction permeability by intestinal bacteria and dietary components. The Journal of Nutrition, 141(5), 769–776.

van Roy, F., & Berx, G. (2008). The cell-cell adhesion molecule E-cadherin. Cellular and Molecular Life Sciences, 65(23), 3756–3788.

Wang, J., Wang, J., Wang, G., Zhu, L., & Wang, J. (2016). DNA damage and oxidative stress induced by imidacloprid exposure in the earthworm Eisenia fetida. Chemosphere, 144, 510–517.

Wu, C., Dong, F., Mei, X., Ning, J., & She, D. (2020). Isotope-labeled internal standards and grouping scheme for determination of neonicotinoid insecticides and their metabolites in fruits, vegetables and cereals – A compensation of matrix effects. Food Chemistry, 311, 125871.

Ye, D., Me, I., & Ma, T. Y. (2006). Molecular mechanism of tumor necrosis factor-alpha modulation of intestinal epithelial tight junction barrier. American Journal of Physiology – Gastrointestinal and Liver Physiology, 290(3), 496–504.

Zhang, H., Aspinall, J. V., Lv, W., Zheng, X., Zhang, H., Li, S., Zhang, J., Bai, N., Zhang, Y., & Wang, X. (2021). Differences in kinetic metabolomics in Eisenia fetida under single and dual exposure of imidacloprid and dinotefuran at environmentally relevant concentrations. Journal of Hazardous Materials, 417, 126001.

Zhao, H., Barger, M. W., Ma, J. K., Castranova, V., & Ma, J. Y. (2006). Cooperation of the inducible nitric oxide synthase and cytochrome P450 1A1 in mediating lung inflammation and mutagenicity induced by diesel exhaust particles. Environmental Health Perspectives, 114(8), 1253–1258.

Published
2021-07-14
How to Cite
Nedzvetsky, V. S., Masiuk, D. M., Gasso, V. Y., Yermolenko, S. V., Huslystyi, A. O., & Spirina, V. A. (2021). Low doses of imidacloprid induce disruption of intercellular adhesion and initiate proinflammatory changes in Caco-2 cells . Regulatory Mechanisms in Biosystems, 12(3), 430-437. https://doi.org/10.15421/022159