The effect of Corvitin on the content of bile acids in the liver of rats under conditions of chronic social stress

  • A. M. Liashevych Zhytomyr Ivan Franko State University
  • І. S. Lupaina Zhytomyr Ivan Franko State University
  • T. L. Davydovska Taras Shevchenko National University of Kyiv
  • O. V. Tsymbalyuk Taras Shevchenko National University of Kyiv
  • Y. R. Oksentiuk Zhytomyr Ivan Franko State University
  • M. Y. Makarchuk Taras Shevchenko National University of Kyiv
Keywords: cholates; bile secretion rate; bile acid conjugation; bile acid hydroxylation; social defeat model.


The article looks at recent research dealing with changes in the bile acid composition of the bile of outbred male rats under chronic social stress (social defeat in daily male confrontations, 14 days) when administered Corvitin (1 mg/kg, intragastrically, 7 days). Chronic social stress was created by daily agonistic interactions between animals. The main fractions of conjugated bile acids – taurocholic, taurohenodeoxycholic and taurodeoxycholic, glycocholic, glycochenodeoxycholic and glycodeoxycholic and free ones – cholic, chenodeoxycholic and deoxycholic were determined by the method of thin layer chromatography of bile. The conjugation index (ratio of the sum of conjugated cholates to the sum of free ones) and hydroxylation (ratio of the sum of trihydroxycholanic bile acids to the sum of dihydroxycholanic ones) of bile acids were calculated. The research showed that in the conditions of experimental social stress, Corvitin enhances the conjugation of bile acids with taurine and glycine, i.e. stimulates detoxification processes in hepatocytes. In the conditions of chronic social stress in male rats, the processes that had provided the flow of glycoconjugates of bile acids from hepatocytes to the bile ducts were further suppressed. The concentrations of glycocholic acid and glycochenodeoxycholic and glycodeoxycholic acids in the bile of male intruders were lower than the control values. But, as seen in the experiment, the use of Corvitin normalized these indicators. The experiment showed that in the conditions of chronic social stress, the content of cholic acid in the bile of intruder rats decreased, and when correcting the pathological condition using Corvitin, it reached the control values. The use of Corvitin simultaneously with the simulation of experimental social stress normalized the biliary secretory function of the liver, indicating the high potential of using Corvitin as a corrective factor in chronic social stress. Correction of stress-induced pathologies of liver bile-secretory function by Corvitin requires further thorough experimental studies.


Arab, J. P., Cabrera, D., & Arrese, M. (2017). Bile acids in cholestasis and its treatment. Annals of Hepatology, 16, 53–57.

Boyer, J. L. (2008). Bile canalicular secretion – tales from Vienna and Yale. Wiener Medizinische Wochenschrift, 158(19), 534–538.

Boyer, J. L. (2013). Bile formation and secretion. Journal of Comparative Physiology, 3(3), 1035–1078.

Brygadyrenko, V. V., Lieshchova, M. A., Bilan, M. V., Tishkina, N. M., & Horchanok, A. V. (2019). Effect of alcohol tincture of Aralia elata on the organism of rats and their gut microbiota against the background of excessive fat diet. Regulatory Mechanisms in Biosystems, 10(4), 497–506.

Chiang, J. Y. (2013). Bile acid metabolism and signaling. Journal of Comparative Physiology, 3(3), 1191–1212.

Chiang, J. Y. (2017). Bile acid metabolism and signaling in liver disease and therapy. Liver Research,1(1), 3–9.

Chuang, J. C., Cui, H., Mason, B. L., Mahgoub, M., Bookout, A. L., Hana, G. Y., Perello, M., Elmquist, J. K., Repa, J. J., Zigman, J. M., & Lutter, M. (2010). Chronic social defeat stress disrupts regulation of lipid synthesis. Journal of Lipid Research, 51(6), 1344–1353.

Clayton, P. T. (2011). Disorders of bile acid synthesis. Journal of Inherited Metabolic Disease, 34(3), 593–604.

Fuchs, C., Claudel, T., & Trauner, M. (2013). Bile acid-mediated control of liver triglycerides. Seminars in Liver Disease, 33(4), 330–342.

Fuchs, M. (2003). Bile acid regulation of hepatic physiology: III Regulation of bile acid synthesis: past progress and future challenges. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 284(4), 551–557.

Giudetti, A. M., Testini, M., Vergara, D., Priore, P., Damiano, F., Gallelli, C. A., Romano, A., Villani, R., Cassano, T., Siculella, L., Gnoni, G. V., Moles, A., Coccurello, R., & Gaetani, S. (2019). Chronic psychosocial defeat differently affects lipid metabolism in liver and white adipose tissue and induces hepatic oxidative stress in mice fed a high-fat diet. The FASEB Journal, 33(1), 1428–1439.

Heubi, J. E., Setchell, D. R., Jha, P., Buckley, D., Zhang, W., Rosenthal, P., Potter, C., Horslen, S., & Suskind, D. (2015). Treatment of bile acid amidation defects with glycocholic acid. Hepatology, 61(1), 268–274.

Horid’ko, T. M., Kosiakova, H. V., Berdyshev, A. G., Meged, O. F., Gudz, E. A., Onopchenko, O. V., Asmolkova, V. S., Lozova, V. M., Tukalenko, E. V., Bondarenko, O. V., Tubalzeva, I. I., Kovalenko, О. А., Makarchuk, M. Y., & Hulа, N. M. (2017). Antistress effects of n-stearoylethanolamine in rats with chronic social stress. The Ukrainian Biochemical Journal, 89(4), 68–76.

Jensen, M. P., Sherlin, L. H., Askew, R. L., Fregni, F., Witkop. G., Gianas, A., & Hakimian, S. (2016). Effects of non-pharmacological pain treatments on brain states. Clinical Neurophysiology, 124, 2016–2024.

Juza, R. M., & Pauli E. M. (2014). Clinical and surgical anatomy of the liver: A review for clinicians. Clinical Anatomy, 27(5), 764–769.

Kiriyama, Y, & Nochi, H. (2019). The biosynthesis, signaling, and neurological functions of bile acids. Biomolecules, 9(6), 232.

Kudryavtseva, N. (1991). A sensory contact model for the study of aggressive and submissive behavior in male mice. Aggressive Behavior, 17(5), 285–291.

Liashevych, A. M., Tubalceva. I. I., Reshetnik, Y. M., Bondarenko, O. V., Veselsky, S. P., & Makarchuk, M. Y. (2017). Influence of experimental chronic social stress on bile acids content in the bile of male rats. Fiziologichnyi Zhurnal, 63(4), 24–29.

Lieshchova, M. A., Tishkina, N. M., Bohomaz, A. A., Gavrilin, P. M., & Brygadyrenko, V. V. (2018). Combined effect of glyphosphate, saccharin and sodium benzoate on rats. Regulatory Mechanisms in Biosystems, 9(4), 591–597.

Maleszka, A., Dumnicka, P., & Matuszyk, A. (2017). The diagnostic usefulness of serum total bile acid concentrations in the early phase of acute pancreatitis of varied etiologies. International Journal of Molecular Sciences, 18(1), 106.

Marin, J. G., Macias, I. R., Briz, O., Banales, J. M., & Monte, M. J. (2015). Bile acids in physiology, pathology and pharmacology. Current Drug Metabolism, 17(1), 4–29.

Matsubara, T., Tanaka, N., Patterson, A. D., Cho, J. Y., Krausz, K. W., & Gonzalez, F. J. (2011). Lithocholic acid disrupts phospholipid and sphingolipid homeostasis leading to cholestasis. Hepatology, 53(4), 1282–1293.

Pierre, J. F., Martinez, K. B., Honggang, Y., Nadimpalli, A., Morton, T. C., Yang, J., Wang, Q., Patno, N., Chang, E. B., & Yin, D. P. (2016). Activation of bile acid signaling improves metabolic phenotypes in high-fat diet-induced obese mice. The American Journal of Physiology: Gastrointestinal and Liver Physiology, 311(2), 286–304.

Scott, K. A, Melhorn. S. J., & Sakai, R. R. (2012). Effects of chronic social stress on obesity. Current Obesity Reports, 1(1), 16–25.

Setchell, D. R., Heubi, J. E., Shah, S., Lavine, J. E., Suskind, D., Al-Edreesi, M., Potter, C., Russell, D. W., O'Connell, N. C., Wolfe, В., Jha, P., Zhang, W., Bove, K. E., Knisely, A. S., Hofmann, A. F., Rosenthal, P., & Bull, L. N. (2013). Genetic defects in bile acid conjugation cause fat-soluble vitamin deficiency. Gastroenterology, 144(5), 945–955.

Shkurashivska, S. V., & Ersteniuk, H. M. (2015). Dynamics of lipid metabolism in tissues and organs of experimental animals under conditions of stress adrenaline. Clinical Chemistry and Laboratory Medicine, 17(4), 34–37.

Silvennoinen, R., Quesada, H., Kareinen, I., Julve, J., Kaipiainen, L., Gylling, H., Blanco-Vaca, F., Escola-Gil, J. C., Kovanen, P. T, & Lee-Rueckert, M. (2015). Chronic intermittent psychological stress promotes macrophage reverse cholesterol transport by impairing bile acid absorption in mice. Physiological Reports, 3(5), 12–14.

Taoka, H., Yokoyama, Y., Morimoto, K., Kitamura, N., Tanigaki, T., Takashina, Y., Tsubota, K., & Watanabe, M. (2016). Role of bile acids in the regulation of the metabolic pathways. World Journal of Diabetes, 7(13), 260–270.

Trauner, M., Claudel, T., Fickert, P, Moustafa, T., & Wagner, M. (2010). Bile acids as regulators of hepatic lipid and glucose metabolism. Digestive Diseases, 28(1), 220–224.

Vasheka, I. P., Veselskyi, S. P., Horenko, Z. A., Hrinchenko, O. A., Karbovska, L. S., & Makarchuk, M. Y. (2014). Impact on amilinu range holativ bile in rats. Fiziologichnyi Zhurnal, 60(3), 46–53.

Vovkun, T. V., Yanchuk, P. I., Shtanova, L. Y., Vesеlskyу, S. P., & Shalamaу, A. S. (2016). Exocrine function of the liver in rats with exposure to cоrvitin. Fiziologichnyi Zhurnal, 62(3), 30–38.

Yan, L., & Lun-Gen, L. (2018). Therapeutic roles of bile acid signaling in chronic liver diseases. Journal of Clinical and Translational Hepatology, 6(4), 425–430.

Yun-Zi, L., Wei, P., Ji-Kuai, C., Wen-Jun, S., Wen-Jie, Y., Yun-Xia, W., & Chun-Lei, J. (2019). FoxO1 is a critical regulator of hepatocyte lipid deposition in chronic stress mice. PeerJ, 7, 76–78.

Zhao, C., & Dahlman-Wright K. (2010). Liver X receptor in cholesterol metabolism. Journal of Endocrinology, 204(3), 233–240.

Zhou, H., & Hylemon, P. B. (2014). Bile acids are nutrient signaling hormones. Steroids, 86, 626–628.

How to Cite
Liashevych, A. M., LupainaІ. S., Davydovska, T. L., Tsymbalyuk, O. V., Oksentiuk, Y. R., & Makarchuk, M. Y. (2021). The effect of Corvitin on the content of bile acids in the liver of rats under conditions of chronic social stress . Regulatory Mechanisms in Biosystems, 12(3), 419-424.

Most read articles by the same author(s)