Intra- and interbreed genetic heterogeneity and divergence in four commercial pig breeds based on microsatellite markers

  • E. A. Snegin Belgorod National Research University
  • A. S. Kramarenko Mykolayiv National Agrarian University
  • O. Y. Artemchuk Belgorod National Research University
  • S. S. Kramarenko Kramarenko
Keywords: microsatellite DNA loci; intrabreed stratification; commercial pig breeds.


In recent years, there has been an increasing amount of attention paid to the genetic health of domesticated animals and its relationship with the level of inbreeding and genetic diversity. At the same time, insufficient attention is still paid to the study of intrabreed genetic diversity and intrabreed stratification. The main goal of our work was to analyze the intra- and interbreed genetic diversity of commercial pig breeds on the basis of DNA microsatellite (MS-DNA) polymorphism. In total, the work used data for 3,308 pigs, which represented 11 herds. The animals belonged to four commercial pig breeds – Duroc (DR), Yorkshire (YR), Landrace (LN) and Large White (LW). 12 microsatellite loci recommended by ISAG-FAO and arranged in one multiplex panel (S0101, S0155, S0228, S0355, S0386, SW24, SW240, SW72, SW857, SW911, SW936, SW951) were used as DNA markers. When analyzing the intra- and interbreed variability of 11 herds, we found that all studied breeds significantly differed in terms of the proportion of both rare and the most common alleles. At the same time, the noted differences were determined, first of all, by the variability between individual herds within their breed. The location of herd centroids is random and is not consistent with their breed affiliation at all. When individuals belonging to the same breed are combined, the centroids of pig breeds in the space of first two axes from a Principal Coordinate Analysis form two clusters. The first one contains the only red pig breed (DR) used in the analysis, while the second one contains white pig breeds. In six pig herds the Ne estimates were below 50 inds., in two herds they were in the range of 50–100 inds., and finally in three herds the Ne estimates exceeded 100 inds. The analysis of the genetic variability of pigs of four commercial breeds showed that the high level of interbreed differences is caused, first of all, by the high variability among pig herds within each studied breed. Such intrabreed stratification can be formed due to the manifestation of many causes: different genetic basis of the founders of intrabreed genealogical groups, geographical isolation, different directions of selection within individual herds, exchange of animals between separate herds, the use of inbreeding in the practice of selection together with isolation, etc. Important consequences of intrabreed stratification are an increase in the level of interherd diversity (which is not lower than the level of interbreed diversity) against the background of a decrease in variability within individual herds, as well as a significant deficit of heterozygotes and an increase in the role of negative genetic and demographic processes. Thus, the existence of genetic heterogeneity within commercial pig breeds should be considered as an essential element in the history of their formation and breeding.


Alves, J. M., Carneiro, M., Afonso, S., Lopes, S., Garreau, H., Boucher, S., Allain, D., Queney, G., Esteves, P. J., Bolet, G., & Ferrand, N. (2015). Levels and patterns of genetic diversity and population structure in domestic rabbits. PloS One, 10(12), e0144687.

Björnerfeldt, S., Hailer, F., Nord, M., & Vilà, C. (2008). Assortative mating and fragmentation within dog breeds. BMC Evolutionary Biology, 8(1), 28.

Chang, M. L., Yokoyama, J. S., Branson, N., Dyer, D. J., Hitte, C., Overall, K. L., & Hamilton, S. P. (2009). Intrabreed stratification related to divergent selection regimes in purebred dogs may affect the interpretation of genetic association studies. Journal of Heredity, 100(suppl. 1), S28–S36.

Chmurzynska, A., Mackowski, M., Szydlowski, M., Melonek, J., Kamyczek, M., Eckert, R., Różycki, M., & Switonski, M. (2004). Polymorphism of intronic microsatellites in the A-FABP and LEPR genes and its association with productive traits in the pig. Journal of Animal and Feed Sciences, 13(61), 615–624.

Colli, L., Perrotta, G., Negrini, R., Bomba, L., Bigi, D., Zambonelli, P., Verini Supplizi, A., Liotta, L., & Ajmone‐Marsan, P. (2013). Detecting population structure and recent demographic history in endangered livestock breeds: the case of the Italian autochthonous donkeys. Animal Genetics, 44(1), 69–78.

Cornuet, J. M., & Luikart, G. (1996). Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics, 144(4), 2001–2014.

Cowled, B. D., Aldenhoven, J., Odeh, I. O., Garrett, T., Moran, C., & Lapidge, S. J. (2008). Feral pig population structuring in the rangelands of eastern Australia: Applications for designing adaptive management units. Conservation Genetics, 9(1), 211–224.

Do, C., Waples, R. S., Peel, D., Macbeth, G. M., Tillett, B. J., & Ovenden, J. R. (2014). NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Molecular Ecology Resources, 14(1), 209–214.

Dumasy, J. F., Daniaux, C., Donnay, I., & Baret, P. V. (2012). Genetic diversity and networks of exchange: A combined approach to assess intra-breed diversity. Genetics Selection Evolution, 44(1), 17.

European Cattle Genetic Diversity Consortium (2006). Marker‐assisted conservation of European cattle breeds: An evaluation. Animal Genetics, 37(5), 475–481.

Garza, J. C., & Williamson, E. G. (2001). Detection of reduction in population size using data from microsatellite loci. Molecular Ecology, 10(2), 305–318.

Glowatzki‐Mullis, M. L., Muntwyler, J., Pfister, W., Marti, E., Rieder, S., Poncet, P. A., & Gaillard, C. (2006). Genetic diversity among horse populations with a special focus on the Franches‐Montagnes breed. Animal Genetics, 37(1), 33–39.

Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4(1), 9.

Herrero-Medrano, J. M., Megens, H. J., Groenen, M. A., Ramis, G., Bosse, M., Pérez-Enciso, M., & Crooijmans, R. P. (2013). Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genetics, 14(1), 106.

Jochová, M., Novák, K., Kott, T., Volek, Z., Majzlík, I., & Tůmová, E. (2017). Genetic characterization of Czech local rabbit breeds using microsatellite analysis. Livestock Science, 201, 41–49.

Keenan, K., McGinnity, P., Cross, T. F., Crozier, W. W., & Prodöhl, P. A. (2013). diveRsity: An R package for the estimation and exploration of population genetics parameters and their associated errors. Methods in Ecology and Evolution, 4(8), 782–788.

Kijas, J. W., Townley, D., Dalrymple, B. P., Heaton, M. P., Maddox, J. F., McGrath, A., Wilson, P., Ingersoll, R. G., McCulloch, R., McWilliam, S., Tang, D., McEwan, J., Cockett, N., Oddy, V. H., Nicholas, F. W., & Raadsma, H. (2009). A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PloS One, 4(3), e4668.

Kim, T. H., Kim, K. S., Choi, B. H., Yoon, D. H., Jang, G. W., Lee, K. T., Chung, H. Y., Lee, H. Y., Park, H. S., & Lee, J. W. (2005). Genetic structure of pig breeds from Korea and China using microsatellite loci analysis. Journal of Animal Science, 83(10), 2255–2263.

Korwin-Kossakowska, A., Sender, G., & Kuryl, J. (2004). Associations between the microsatellite DNA sequence in the IGF1 gene, polymorphism in the ESR gene and selected reproduction traits in F1 (Zlotnicka Spotted × Polish Large White) sows. Animal Science Papers and Reports, 22(2), 215–226.

Krupa, E., Žáková, E., & Krupová, Z. (2015). Evaluation of inbreeding and genetic variability of five pig breeds in Czech Republic. Asian-Australasian Journal of Animal Sciences, 28(1), 25–36.

Lazebnaya, I. V., Perchun, A. V., & Lazebny, O. E. (2020). Intrabreed and interbreed variation of the BOLA-DRB3. 2 gene in the Kostroma and Yaroslavl indigenous Russian cattle breeds. Immunogenetics, 72(6), 355–366.

Lemus-Flores, C., Ulloa-Arvizu, R., Ramos-Kuri, M., Estrada, F. J., & Alonso, R. A. (2001). Genetic analysis of Mexican hairless pig populations. Journal of Animal Science, 79(12), 3021–3026.

Li, F. E., Mei, S. Q., Deng, C. Y., Jiang, S. W., Zuo, B., Zheng, R., Li, J. L., Xu, D. Q., Lei, M. G., & Xiong, Y. Z. (2008). Association of a microsatellite flanking FSHB gene with reproductive traits and reproductive tract components in pigs. Czech Journal of Animal Science, 53(4), 139–144.

Lugovoy, S. I., Kharzinova, V. R., Kramarenko, S. S., Lykhach, A. V., Kramarenko, A. S., & Lykhach, V. Y. (2018). Genetic polymorphism of microsatellite loci and their association with reproductive traits in Ukrainian meat breed pigs. Cytology and Genetics, 52(5), 360–367.

Lugovoy, S. I., Kramarenko, S. S., & Lykhach, V. Y. (2017). Intra-breed variation in the Large White pig breed based on the microsatellite DNA polymorphism. Ştiinţa Agricolă, 1, 94–98 (in Russian).

Martınez, A. M., Delgado, J. V., Rodero, A., & Vega‐Pla, J. L. (2000). Genetic structure of the Iberian pig breed using microsatellites. Animal Genetics, 31(5), 295–301.

Martínez, A. M., Gama, L. T., Delgado, J. V., Cañón, J., Amills, M., de Sousa, C. B., Ginja, C., Zaragoza, P., Manunza, A., Landi, V., Sevane, N., & The BioGoat Consortium (2015). The Southwestern fringe of Europe as an important reservoir of caprine biodiversity. Genetics Selection Evolution, 47(1), 86.

Nei, M. (1972). Genetic distance between populations. The American Naturalist, 106(949), 283–292.

Paetkau, D., Calvert, W., Stirling, I., & Strobeck, C. (1995). Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology, 4(3), 347–354.

Peakall, R., & Smouse, P. E. (2012). GenAIEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics, 28(19), 2537–2539.

SanCristobal, M., Chevalet, C., Haley, C. S., Joosten, R., Rattink, A. P., Harlizius, B., Groenen, A. M., Amigues, Y., Boscher, M.‐Y., Russell, G., Law, A., Davoli, R., Russo, V., Désautés, C., Alderson, L., Fimland, E., Bagga, M., Delgado, J. V., Vega‐Pla, J. L., Martinez, A. M., Ramos, M., Glodek, P., Meyer, J. N., Gandini, G. C., Matassino, D., Plastow, G. S., Siggens, K. W., Laval, G., Archibald, A. L., Milan, D., Hammond, K., Cardellino, R., & Law, A. (2006). Genetic diversity within and between European pig breeds using microsatellite markers. Animal Genetics, 37(3), 189–198.

Serrano, M., Calvo, J. H., Martínez, M., Marcos-Carcavilla, A., Cuevas, J., González, C., Jurado., J. J., & de Tejada, P. D. (2009). Microsatellite based genetic diversity and population structure of the endangered Spanish Guadarrama goat breed. BMC Genetics, 10(1), 61.

Sollero, B. P., Paiva, S. R., Faria, D. A., Guimarães, S. E. F., Castro, S. T. R., Egito, A. A., Albuquerque, M. S. M., Piovezan, U., Bertani, G. R., & Mariante, A. D. S. (2009). Genetic diversity of Brazilian pig breeds evidenced by microsatellite markers. Livestock Science, 123(1), 8–15.

Šveistienė, R., & Jatkauskienė, V. (2008). Analyses of the genetic diversity within Lithuanian white-backed cattle. Veterinarija ir Zootechnika, 44(66), 67–72.

Šveistienė, R., & Razmaitė, V. (2013). Animal genetic resources in Lithuania. Slovak Journal of Animal Science, 46(4), 131–136.

Vicente, A. A., Carolino, M. I., Sousa, M. C. O., Ginja, C., Silva, F. S., Martinez, A. M., Vega-Pla, J. L., Carolino, N., & Gama, L. T. (2008). Genetic diversity in native and commercial breeds of pigs in Portugal assessed by microsatellites. Journal of Animal Science, 86(10), 2496–2507.

Wiener, P., Sánchez-Molano, E., Clements, D. N., Woolliams, J. A., Haskell, M. J., & Blott, S. C. (2017). Genomic data illuminates demography, genetic structure and selection of a popular dog breed. BMC Genomics, 18(1), 1–13.

Wilkinson, S., Haley, C., Alderson, L., & Wiener, P. (2011). An empirical assessment of individual-based population genetic statistical techniques: Application to British pig breeds. Heredity, 106(2), 261–269.

Wilkinson, S., Wiener, P., Teverson, D., Haley, C. S., & Hocking, P. M. (2012). Characterization of the genetic diversity, structure and admixture of British chicken breeds. Animal Genetics, 43(5), 552–563.

Yeh, F. C., Boyle, T., Rongcai, Y., Ye, Z., & Xian, J. M. (1999). Popgene, version 1.31. A Microsoft Windows based freeware for population genetic analysis. University of Alberta, Edmonton.

Zanella, R., Peixoto, J. O., Cardoso, F. F., Cardoso, L. L., Biegelmeyer, P., Cantão, M. E., Otaviano, A., Freitas, M. S., Caetano, A. R., & Ledur, M. C. (2016). Genetic diversity analysis of two commercial breeds of pigs using genomic and pedigree data. Genetics Selection Evolution, 48(1), 24.

How to Cite
Snegin, E. A., Kramarenko, A. S., Artemchuk, O. Y., & Kramarenko, S. S. (2021). Intra- and interbreed genetic heterogeneity and divergence in four commercial pig breeds based on microsatellite markers . Regulatory Mechanisms in Biosystems, 12(1), 128-135.