Genetic diversity of Ukrainian local pig breeds based on microsatellite markers


Keywords: STR loci; genetic characterization; swine; Ukraine

Abstract

Preserving the current diversity of the living material on Earth is fundamental for the survival of future generations . A study was conducted to investigate the genetic diversity of Ukrainian local pig breeds. A total of 350 pigs representing five local pig breeds from Ukraine (Mirgorod – MIR, Poltava Meat – PM, Ukrainian Meat – UM, Ukrainian White Steppe – UWS and Ukrainian Spotted Steppe – USS) and one commercial breed (Duroc, DUR) were sampled. Twelve microsatellite loci (SW24, S0155, SW72, SW951, S0386, S0355, SW240, SW857, S0101, SW936, SW911 and S0228) were selected and belong to the list of microsatellite markers recommended by ISAG. The results indicate that there exists, in general, a high degree of genetic variability within the five Ukrainian local pig breeds. However, the genetic variability in the MIR and PM breeds was significantly lower (mean Na = 2.92–3.92; Ho = 0.382–0.411; FIS = 0.178–0.184) than in the other three Ukrainian local pig breeds – UM, UWS and USS (mean Na = 5.00–8.42; Ho = 0.549–0.668; FIS = 0.027–0.066). Thirty-four private alleles were identified among the six analyzed genetic groups which were distributed between 11 of the 12 loci. A high number of alleles typical for the breed (private alleles) was observed in Duroc pigs – 9 alleles did not occur in Ukrainian local pig breeds. The HWE test showed that all of the polymorphic loci deviated from HWE (P < 0.05) in at least one population. Loci S0355 (5), S0386 (4) and SW24 (4) presented a higher number of populations in imbalance. The mean FST showed that approximately 77.8% of the genetic variation was within-population and 12.2% was across the populations. The five Ukrainian local breeds were classified into two major groups, according to the phylogenetic tree, which was based on standard genetic distance. Overall, we found that 92.6% of the individual pigs were correctly assigned (324 out of 350) to the respective breed of origin, which is likely a consequence of the well-defined breed structure. Probabilities from the allocation test of individuals for the six pig genetic groups were estimated with Structure Harvester. In cluster 1 the highest grouping probabilities were found for the MIR (0.917) and PM (0.750) breeds. Local breeds UM (0.824) and USS (0.772) were grouped in cluster 2. Cluster 3 was related to the local pig breed USW (0.873). Cluster 4 presented high allocation probabilities for the commercial pig breed Duroc (0.924). The obtained results are important for the future conservation of Ukrainian local pig breeds.

References

Behl, R., Kaul, R., Sheoran, N., Behl, J., Tantia, M. S., & Vijh, R. K. (2002). Genetic identity of two Indian pig types using microsatellite markers. Animal Genetics, 33(2), 158–159.


Berthouly, C., Bed'Hom, B., Tixier-Boichard, M., Chen, C. F., Lee, Y. P., Laloë, D., Legros, H., Verrier, E., & Rognon, X. (2008). Using molecular markers and multivariate methods to study the genetic diversity of local European and Asian chicken breeds. Animal Genetics, 39, 121–129.


Chang, W. H., Chu, H. P., Jiang, Y. N., Li, S. H., Wang, Y., Chen, C. H., Chen, K. J., Lin, C. Y., & Ju, Y. T. (2009). Genetic variation and phylogenetics of Lanyu and exotic pig breeds in Taiwan analyzed by nineteen microsatellite markers. Journal of Animal Science, 87(1), 1–8.


Earl, D. A. (2012). Structure harvester: A website and program for visualizing Structure output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361.


Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software Structure: A simulation study. Molecular Ecology, 14(8), 2611–2620.


Fan, B., Wang, Z.-G., Li, Y.-J., Zhao, X.-L., Liu, B., Zhao, S.-H., Yu, M., Li, M.-H., Chen, S.-L., Xiong, T.-A., & Li, K. (2002). Genetic variation analysis within and among Chinese indigenous swine populations using microsatellite markers. Animal Genetics, 33, 422–427.


Gandini, G. C., & Villa, E. (2003). Analysis of the cultural value of local livestock breeds: A methodology. Journal of Animal Breeding and Genetics, 120(1), 1–11.


Guo, S. W., & Thompson, E. A. (1992). Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics, 361–372.


Hammer, H., Harper, D. A. T., & Ryan, P. D. (2001). Past: Paleontological Statis tics software package for education and data analysis. Palaeontologia Electro nica, 4(1), 1–9.


Hammond, K., & Leitch, H. (1998). Implementing the global strategy for the management of farm animal genetic resources. FAO, Rome, Italy.


Kim, T. H., Kim, K. S., Choi, B. H., Yoon, D. H., Jang, G. W., Lee, K. T., Chung, H. Y., Lee, H. Y., Park, H. S., & Lee, J. W. (2005). Genetic structure of pig breeds from Korea and China using microsatellite loci analysis. Journal of Animal Science, 83(10), 2255–2263.


Laval, G., Iannuccelli, N., Legault, C., Milan, D., Groenen, M. A., Giuffra, E., Andersson, L., Nissen, P. H., Jørgensen, C. D., Beeckmann, P., Geldermann, H., Foulley, J.-L., Chevalet, C., & Geldermann, H. (2000). Genetic diversity of eleven European pig breeds. Genetics Selection Evolution, 32(2), 187.


Nei, M. (1972). Genetic distance between populations. The American Naturalist, 106(949), 283–292.


Nidup, K., & Moran, C. (2011). Genetic diversity of domestic pigs as revealed by microsatellites: A mini-review. Genomics and Quantitative Genetics, 2, 5–18.


Ollivier, L. (2009). European pig genetic diversity: A mini-review. Animal, 3(7), 915–924.


Ollivier, L., Alderson, L., Gandini, G. C., Foulley, J. L., Haley, C. S., Joosten, R., Rattink, A. P., Harlizius, B., Groenen, M. A. M., Amigues, Y., Boscher, M. Y., Russell, G., Law, A., Davoli, R., Russo, V., Matassino, D., Désautés, C., Fimland, E., Bagga, M., Delgado, J. V., Vega-Pla, J. L., Martinez, A. M., Ramos, A. M., Glodek, P., Meyer, J. N., Plastow, G. S., Siggens, K. W., Archibald, A. L., Milan, D., San Cristobal, M., Laval, G., Hammond, K., Cardellino, R., & Chevalet, C. (2005). An assessment of European pig diver sity using molecular markers: Partitioning of diversity among breeds. Con servation Genetics, 6(5), 729–741.


Paetkau, D., Calvert, W., Stirling, I., & Strobeck, C. (1995). Microsatellite analysis of population structure in Canadian polar bears. Molecular Ecology, 4(3), 347–354.


Peakall, R., & Smouse, P. E. (2012). GenAIEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and researchd – an update. Bioinformatics, 28(19), 2537–2539.


Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155(2), 945–959.


Romanov, M. N., & Weigend, S. (2001). Analysis of genetic relationships bet ween various populations of domestic and jungle fowl using microsatellite markers. Poultry Science, 80(8), 1057–1063.


Rousset, F. (2008). Genepop’007: A complete re-implementation of the Genepop software for Windows and Linux. Molecular Ecology Resources, 8(1), 103–106.


SanCristobal, M., Chevalet, C., Foulley, J. L., & Ollivier, L. (2003). Some methods for analysing genetic marker data in a biodiversity setting – Example of the PigBioDiv data. Archivos de Zootecnia, 52(198), 173–183.


SanCristobal, M., Chevalet, C., Haley, C. S., Joosten, R., Rattink, A. P., Harlizius, B., Groenen, M. A. M., Amigues, Y., Boscher, M.-Y., Russell, G., Law, A., Davoli, R., Russo, V., Désautés, C., Alderson, L., Fimland, E., Bagga, M., Delgado, J. V., Vega-Pla, J. L., Martinez, A. M., Ramos, M., Glodek, P., Meyer, J. N., Gandini, G. C., Matassino, D., Plastow, G. S., Siggens, K. W., Laval, G., Archibald, A. L., Milan, D., Hammond, K., & Cardellino, R. (2006). Genetic diversity within and between European pig breeds using microsa tellite markers. Animal Genetics, 37, 189–198.


Silva, E. C. D., Dutra Junior, W. M., Ianella, P., Gomes Filho, M. A., Oliveira, C. J. P. D., Ferreira, D. N. D. M., Caetano, A. R., & Paiva, S. R. (2011). Pat terns of genetic diversity of local pig populations in the State of Pernambuco, Brazil. Revista Brasileira de Zootecnia, 40(8), 1691–1699.


Sneath, P. H., & Sokal, R. R. (1973). Numerical taxonomy. The principles and prac tice of numerical classification.W. H. Freeman and Company, San Francisco.


Sollero, B. P., Paiva, S. R., Faria, D. A., Guimarães, S. E. F., Castro, S. T. R., Egito, A. A., Albuquerque, M. S. M., Piovezan, U., Bertani, G. R., & Mariante, A. D. S. (2009). Genetic diversity of Brazilian pig breeds evidenced by mic rosatellite markers. Livestock Science, 123(1), 8–15.


Stolpovskiy, Y. A., & Zakharov-Gezekhus, I. A. (2017). The problem of conser vation of gene pools of domesticated animals. Vavilov Journal of Genetics and Breeding, 21(4), 477–486.


Traspov, A., Deng, W., Kostyunina, O., Ji, J., Shatokhin, K., Lugovoy, S., Zinivie va, B., Yang, B., & Huang, L. (2016). Population structure and genome cha racterization of local pig breeds in Russia, Belorussia, Kazakhstan and Uk raine. Genetics Selection Evolution, 48(1), 16.


Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38(6), 1358–1370.


Wintero, A. K., Fredholm, M., & Thomsen, P. D. (1992). Variable (dG-dT)n (dC-dA)n sequences in the porcine genome. Genomics, 12(2), 281–288.


Yang, S. L., Wang, Z. G., Liu, B., Zhang, G. X., Zhao, S. H., Yu, M., Fan, B., Li, M. H., Xiong, T. A., & Li, K. (2003). Genetic variation and relationships of eighteen Chinese indigenous pig breeds. Genetics Selection Evolution, 35(7), 657.


Zaman, G., Shekar, M. C., & Aziz, A. (2013). Molecular characterization of Meg halaya Local pigs (Niang Megha) using microsatellite markers. Indian Jour nal of Science and Technology, 6(10), 5302–5306.


Zeveren, A. V., Peelman, L., Weghe, A. V. D., & Bouquet, Y. (1995). A genetic study of four Belgian pig populations by means of seven microsatellite loci. Journal of Animal Breeding and Genetics, 112, 191–204.


Zinovieva, N. A., & Gladyr, E. A. (2011). Geneticheskaya ekspertiza sel’skokho zyaystvennykh zhivotnykh: Primenenie test-sistem na osnove mikrosatellitov [Genetic evaluation of agricultural animals: The use of microsatellite test system]. Dostizheniya Nauki i Tekhniki APK, 9, 19–20 (in Russian).

Published
2018-04-29
How to Cite
Kramarenko, S. S., Lugovoy, S. I., Kharzinova, V. R., Lykhach, V. Y., Kramarenko, A. S., & Lykhach, A. V. (2018). Genetic diversity of Ukrainian local pig breeds based on microsatellite markers. Regulatory Mechanisms in Biosystems, 9(2), 177-182. https://doi.org/https://doi.org/10.15421/021826

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.