Influence of modern treatment regimens on serum biochemical parameters in piglets with gastroenteritis

Keywords: antibiotic; probiotics; phytobiotics; protein synthesis function; pigment-forming function; enzymes activity.


The article presents analyses of biochemical parameters of blood serum in weaned piglets with non-contagious gastroenteritis and after their treatment with a probiotic (live spores of Bacillus cereus var. toyoi; silicic acid; calcium carbonate) and a phytobiotic (natural extracts of Oreganum vulgare, Cinnamomun cassia and Capsicum annuum; hydrogenated rapeseed oil) as part of the basic ration in combination with antibiotic (10% solution of enrofloxacin hydrochloride) on a modern pig farm. In animals of the experimental groups with gastroenteritis we established hypoproteinemia, hypoalbuminemia, hypoglycemia, hypoureaemia, hypercreatininemia, hyperbilirubinemia and increase of enzyme activity compared to parameters of clinically healthy piglets. The study established that the use of probiotics and phytobiotics for weaned piglets had a positive influence on protein synthesis function of the liver, as indicated by the normalization of serum total protein and albumins. Also, we found a positive influence of probiotics and phytobiotics on intensity of protein metabolism, as indicated by an increase of serum urea to the level of clinically healthy piglets. Use of phytobiotics for piglets had a positive influence on the process of gluconeogenesis in their body, which is indicated by the normalization of serum glucose to the level of clinically healthy piglets. Also, the use of probiotics and phytobiotics had a positive influence on the pigment-forming function of the liver, as indicated by the reduction of serum total bilirubin to the level of clinically healthy piglets. The use of probiotics and phytobiotics reduced activity of serum alanine and aspartate aminotransferases in the piglets of the experimental groups, indicating the stabilization of hepatocytes’ cell structures (mitochondrial and cytosolic). The study established positive influence of probiotics and phytobiotics on the functioning of the liver and biliary tract, as indicated by decreased activity of serum alkaline phosphatase and gamaglutamiltranspeptidase to the level of clinically healthy piglets. So, addition of probiotics and phytobiotics to mixed fodder up to 45 days of age, normalizes functioning of the kidneys and liver in weaned piglets with gastroenteritis.


Adewole, D. I., Kim, I. H., & Nyachoti, C. M. (2016). Gut health of pigs: Challenge models and response criteria with a critical analysis of the effectiveness of selected feed. Asian-Australasian Journal of Animal Sciences, 29(7), 909–924.

Ahmed, S. T., Hoon, J., Mun, H., & Yang, C. (2014). Evaluation of Lactobacillus and Bacillus – based probiotics as alternatives to antibiotics in enteric microbial challenged weaned piglets. African Journal of Microbiology Research, 8(1), 96–104.

Ariza-Nieto, C., Bandrick, M., Baidoo, S. K., Molitor, T. W., & Hathaway, M. R. (2011). Effect of dietary supplementation of oregano essential oils to sows on colostrum and milk composition, growth pattern and immune status of suckling pigs. Journal of Animal Science, 89(4), 1079–1089.

Boyko, O. O., Zazharska, N. M., & Brygadyrenko, V. V. (2016). The influence of the extent of infestation by helminths upon changes in body weight of sheep in Ukraine. Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(1), 3–7.

Brown, M. (2011). Modes of action of probiotic: Recent developments. Journal of Animal and Veterinary Advances, 10(14), 1895–1900.

Bulter, J., Sinkora, M., & Wertz, N. (2006). Development of the neonatal B and T cell repertoire in swine: Implications for comparative and veterinary immunology. Veterinary Research, 37(3), 417–441.

Chen, X., Xu, J., Ren, E. Su, Y., & Zhu, W. (2018). Co-occurrence of early gut colo­nization in neonatal piglets with microbiota in the maternal and surrounding delivery environments. Anaerobe, 49, 30–40.

Chowdhury, R., Haque, M. N., Islam, K. M. S., & Khaleduzzaman, A. B. M. (2009). A review on antibiotics in an animal feed. Bangladesh Journal of Animal Science, 38, 22–32.

Cromwell, G. L. (2002). Why and how antibiotics are used in swine production? Animal Biotechnology, 13(1), 7–27.

Czech, A., Smolczyk, A., & Ognik, K. (2018). Effect of dietary supplementation with Yarrowia lipolytica or Saccharomyces cerevisiae yeast and probiotic additives on haematological parameters and the gut microbiota in piglets. Research in Veterinary Science, 119, 221–227.

De Lange, C., Pluske, J. R., Gong, J., & Nyachoti, C. M. (2010). Strategic use of feed ingredients and feed additives to stimulate gut health and development in young pigs. Livestock Science, 134, 124–134.

Fedak, N., Chumachenko, S., Darmohray, L. M., Gutyj, B. V., & Perederiy, M. H. (2018). The effectiveness of the use of probiotics for wet maize grain preserving. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies, 20(89), 85–88.

Frankic, T., Levart, A., & Salobir, J. (2010). The effect of vitamin E and plant extract mixture composed of carvacrol, cinnamaldehyde and capsaicin on oxidative stress induced by high PUFA load in young pigs. Animal, 4(4), 572–578.

Gheisar, M. M., & Kim, I. H. (2018). Phytobiotics in poultry and swine nutrition – a review. Italian Journal of Animal Science, 17(1), 92–99.

Gonzalez, L. M., Moeser, A. J., & Blikslager, A. T. (2015). Porcine models of digestive disease: The future of large animal translational research. Translational Research, 166(1), 12–27.

Gresse, R., Chaucheyras-Durand, F., Fleury, M., Van de Wiele, T., Forano, E., & Blanquet-Diot, S. (2017). Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends in Microbiology, 25(10), 851–873.

Gutyj, B., Stybel, V., Darmohray, L., Lavryshyn, Y., Turko, I., Hachak, Y., Shcherbatyy, A., Bushueva, I., Parchenko, V., Kaplaushenko, A., Krushelnytska, O. (2017b). Prooxidant-antioxidant balance in the organism of bulls (young cattle) after using cadmium load. Ukrainian Journal of Ecology, 7(4), 589–596.

Han, C., Dai, Y., Liu, B. Wang, L., Wang, J., & Zhang, J. (2019). Diversity analysis of intestinal microflora between healthy and diarrheal neonatal piglets from the same litter in different regions. Anaerobe, 55, 136–141.

Hanczakowska, E., & Swiatkiewicz, M. (2012). Effect of herbal extracts on piglet performance and small intestinal epithelial villi. Czech Journal of Animal Science, 57(9), 420–429.

Hedemann, M. S., & Jensen, B. B. (2004). Variations in enzyme activity in sto­mach and pancreatic tissue and digesta in piglets around weaning. Archives of Animal Nutrition, 58(1), 47–59.

Heo, J. M., Opapeju, F. O., & Kim, J. C. (2012). Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. Journal of Animal Physiology and Animal Nutrition, 97(2), 207–237.

Holman, D. B., & Chénierab, M. R. (2015). Antimicrobial use in swine production and its effect on the swine gut microbiota and antimicrobial resistance. Canadian Journal of Microbiology, 61(11), 785–798.

Hu, J., Ma, L., Nie, Y., Chen, J., Zheng, W., Wang, X., Xie, C., Zhenh, Z., Wang, Z., Yang, T., Shi, M., Chen, L., Hou, Q., Niu, Y., Xu, X., Zhu, Y., Zhang, Y., Wei, H., & Yan, X. (2018). A microbiota-derived bacteriocin targets the host to confer diarrhea resistance in early-weaned piglets. Cell Host and Microbe, 24(6), 817–832.

Jacela, J. Y., DeRouchey, J. M., & Tokach, M. D. (2010). Feed additives for swine: Fact sheets – prebiotics and probiotics, and phytogenics. Kansas Agricultural Experiment Station Research Reports, 18(3), 132–136.

Jadamus, A., Vahjen, W., & Simon, O. (2000). Influence of the probiotic bacterial strain, Bacillus cereus var. toyoi, on the development of selected microbial groups adhering to intestinal mucosal tissues of piglets. Journal of Animal and Feed Sciences, 9(2), 347–362.

Jayaraman, B., & Nyachoti, C. M. (2017). Husbandry practices and gut health outcomes in weaned piglets: A review. Animal Nutrition, 3(3), 205–211.

Kiczorowska, B., Samolinska, W., & Al-Yasiry, A. R. M. (2017). The natural feed additives as immunostimulants in monogastric animal nutrition – a review. Annals of Animal Science, 17(3), 605–625.

Kommera, S. K., Mateo, R. D., Neher, F. J., & Kim, S. W. (2006). Phytobiotics and organic acids as potential alternatives to the use of antibiotics in nursery pig diets. Asian-Australasian Journal of Animal Sciences, 19(12), 1784–1789.

Konstantinov, S. R., Awati, A., Williams, B. A., Miller, B. G., Jones, P., Stokes, C. R., Akkermans, A. D., Smidt, H., & de Vos, W. M. (2006). Post-natal development of the porcine microbiota composition and activities. Environmental Microbiology, 8(7), 1191–1199.

Kozak, V. M., & Brygadyrenko, V. V. (2018). Impact of cadmium and lead on Megaphyllum kievense (Diplopoda, Julidae) in a laboratory experiment. Biosystems Diversity, 26(2), 128–131.

Kulyaba, O., Stybel, V., Gutyj, B., Turko, I., Peleno, R., Turko, Y., Golovach, P., Vishchur, V., Prijma, O., Mazur, I., Dutka, V., Todoriuk, V., Golub, O., Dmytriv, O., & Oseredchuk, R. (2019). Effect of experimental fascioliasis on the protein synthesis function of cow liver. Ukrainian Journal of Ecology, 9(4), 612–615.

Lalles, J. P., Boudry, G., Favier, C., Le Floc'h, N., Luron, I., Montagne, L., Oswald, I. P., Pié, S., Piel, C., & Sève, B. (2004). Gut function and dysfunction in young pigs: Physiology. Animal Research, 53(4), 301–316.

Lodemann, U., Lorenz, B. M., Weyrauch, K. D., & Martens, H. (2008). Effects of Bacillus cereus var. toyoi as probiotic feed supplement on intestinal transport and barrier function in piglets. Archives of Animal Nutrition, 62(2), 87–106.

Lukashchuk, B. O., & Slivinska, L. G. (2015). Prophylactic effectiveness of phytobiotic feed additive for non-contagious diseases of the gastrointestinal tract in suckling piglets. Science and Education a New Dimension. Natural and Technical Sciences, 3(5), 54–56.

Lukashchuk, B. O., Slivinska, L. G., & Shcherbatyy, A. R. (2018). Effectiveness of phytobiotic for prophylactic non-contagious gastrointestinal diseases in suckling piglets. Ukrainian Journal of Veterinary and Agricultural Sciences, 1(1), 30–34.

Metzler, B., Bauer, E., & Mosenthin, R. (2005). Microflora management in the gastrointestinal tract of piglets. Asian-Australasian Journal of Animal Sciences, 18, 1353–1362.

Michiels, J., Missotten, J., Van Hoorick, A., Ovyn, A., Fremaut, D., De Smet, S., & Dierick, N. (2010). Effects of dose and formulation of carvacrol and thymol on bacteria and some functional traits of the gut in piglets after weaning. Archives of Animal Nutrition, 64, 136–154.

Neil, C. R., Nelssen, J. L., Tokach, M. D., Goodband, R. D., DeRouchey, J. M., Dritz, S. S., Groesbeck, C. N., & Brown, K. R. (2006). Effects of oregano oil on growth performance of nursery pigs. Journal of Swine Health and Production, 14(6), 312–316.

Pittman, J. S. (2010). Enteritis in grower-finisher pigs caused by F18-positive Escherichia coli. Journal of Swine Health and Production, 18(2), 81–86.

Pluske, J. R., Kerton, D. K., Cranwell, P. D., Campbell, R. G., Mullan, B. P., King, R. H., Power, G. N., Pierzynowski, S. G., Westrom, B., Rippe, C., Peulen, O., & Dunshea, F. R. (2003). Age, sex, and weight at weaning influence organ weight and gastrointestinal development of weanling pigs. Australian Journal of Agricultural Research, 54, 515–527.

Pluske, J. R., Turpin, D. L., & Kim, J. C. (2018). Gastrointestinal tract (gut) health in the young pig. Animal Nutrition, 4(2), 187–196.

Ross, G. R., Gusils, C., Oliszewski, R., de Holgado, S. C., & González, S. N. (2010). Effects of probiotic administration in swine. Journal of Bioscience and Bioengineering, 109(6), 545–549.

Silva, M. L. F., Lima, J. A. F., & Cantarelli, V. S. (2010). Probiotics and antibio­tics as additives for sows and piglets during nursery phase. Revista Brasileira de Zootecnia, 39(11), 2453–2459.

Simon, O. (2010). An interdisciplinary study on the mode of action of probiotics in pigs. Journal of Animal and Feed Sciences, 19(2), 230–243.

Sinkora, J., Rehakova, Z., Sinkora, M., Cukrowska, B., & Tlaskalova-Hogenova, H. (2002). Early development of immune system in pigs. Veterinary Immunology and Immunopathology, 87(3–4), 301–306.

Slivinska, L. G., & Lukashchuk, B. O. (2018). Therapeutic effectiveness of probiotic and phytobiotic for gastroenteritis of weaned piglets. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies. 20(87), 85–88.

Slivinska, L. G., Shcherbatyy, A. R., Lukashchuk, B. O., Zinko, H. O., Gutyj, B. V., Ly­chuk, M. G., Chernushkin, B. O., Leno, M. I., Prystupa, O. I., Leskiv, K. Y., Slepokura, O. I., Sobolev, O. I., Shkromada, O. I., Kysterna, O. S., & Мusiienko, O. V. (2019). Correction of indicators of erythrocytopoesis and microelement blood le­vels in cows under conditions of technogenic pollution. Ukrainian Journal of Eco­logy, 9(2), 127–135.

Sobolev, O. I., Gutyj, B. V., Sobolievа, S. V., Fesenko, V. F., Bilkevych, V. V., Ba­benko, O. I., Klopenko, N. I., Kachan, A. D., Kosior, L. T., Lastovska, I. O., Vered, P. I., Shulko, O. P., Onyshchenko, L. S., & Slobodeniuk, O. І. (2019). The influence of different doses of lithium additive in mixed feed on the balance of nitrogen in organism of goslings. Ukrainian Journal of Ecology, 9(2), 91–96.

Solà-Oriol, D., & Gasa, J. (2017). Feeding strategies in pig production: Sows and their piglets. Animal Feed Science and Technology, 233, 34–52.

Sun, Y., & Kim, S. W. (2017). Intestinal challenge with enterotoxigenic Escherichia coli in pigs, and nutritional intervention to prevent postweaning diarrhea. Animal Nutrition, 3(4), 322–330.

Trevisi, P., & Pérez, J. F. (2017). Diets and pig gut health: Preface. Animal Feed Science and Technology, 233, 87–88.

Verstegen, M. W. A., & Williams, B. A. (2002). Alternatives to the use of antibiotics as growth promoters for monogastric animals. Animal Biotechnology, 13, 113–127.

Vidanarachchi, J. K., Mikkelsen, L. L., Sims, I., Iji, P. A., & Choct, M. (2005). Phytobiotics: Alternatives to antibiotic growth promoters in monogastric animal feeds. Recent Advances in Animal Nutrition in Australia, 15, 131–144.

Vondruskova, H., Slamova, R., Trckova, M., Zraly, Z., & Pavlik, I. (2010). Alternatives to antibiotic growth promoters in prevention of diarrhoea in weaned piglets: A review. Veterinarni Medicina, 55(5), 199–224.

Wheeler, T. T., Hodgkinson, A. J., Prosser, C., & Davis, S. R. (2008). Immune com­ponents of colostrum and milk – a historical perspective. Journal of Mammary Gland Biology and Neoplasia, 12(4), 237–247.

Williams, B. A., Verstegen, M. W., & Tamminga, S. (2002). Fermentation in the large intestine of single stomached animals and its relationship to animal health. Nutrition Research Reviews, 14(2), 207–228.

Zabielski, R., Godlewski, M. M., & Guilloteau, P. (2008). Control of development of gastrointestinal system in neonates. Journal of Physiology and Pharmacology, 59(1), 35–54.

Živković, B., Migdał, W., & Radović, Č. (2011). Probiotics in nutrition of sows and piglets. Biotechnology in Animal Husbandry, 27(3), 547–559.

How to Cite
Lukashchuk, B. O., Slivinska, L. G., Shcherbatyy, A. R., Zinko, H. O., & Gutyj, B. V. (2020). Influence of modern treatment regimens on serum biochemical parameters in piglets with gastroenteritis . Regulatory Mechanisms in Biosystems, 11(1), 67-73.

Most read articles by the same author(s)