Breast tumour size as a predictor of hemostatic system status and endothelial function in dogs

  • D. D. Bely Dnipro State Agrarian and Economic University
  • M. V. Rublenko Bila Tserkva National Agrarian University
  • V. V. Smoyuluk Dnipro State Agrarian and Economic University
  • I. D. Yevtushenko Kharkiv State Veterinary Academy
  • S. N. Maslikov Dnipro State Agrarian and Economic University
Keywords: neoplasms; hemostasis balance; endothelial function; neoplasia size; hypercoagulation.


The high level of morbidity of dogs from mammary gland tumours and deficiencies in the pathogenesis give relevance to study of the disorders of the hemostatic system for predicting the neoplasia process. Our research concerned the determination of markers of the hemostatic system and endothelial function at different sizes (≤ 2, 5–7 and >10 cm) of benign (n = 28) and malignant (n = 27) breast tumours in dogs, taking into account their histological structure. The progression of the tumour process was accompanied by a 1.24–1.81 times increase in the fibrinogen content in the benign forms and 1.39–2.38 times in malignant against the background of progressive excess accumulation of soluble fibrin. The results of coagulation tests indicate that the increase in blood coagulation, which correlates with the magnitude of tumours, occurred mainly externally. In malignant neoplasms reliable, compared to clinically healthy dogs, reduction of total fibrinolytic activity occurred due to deficient inhibition of tissue plasminogen activator by 1.62–2.03 times. Increase in the size of benign neoplasms was accompanied by increased activity of the α1-inhibitor of proteinases, and in malignant – only in tumours of the size of 5–7 cm, against the background of its decrease in dogs with small and giant neoplasia. The progression of the disease was characterized by an increase in the content of α2-macroglobulin in benign lesions from 1.19–1.24 times, malignant – from 1.25–2.03 times. At the same time, there was a deepening of oxidative stress, as evidenced by the excess accumulation in the blood of malondialdehyde by 1.29–1.70 times in benign tumours, and 1.58–2.73 times in malignant. Regardless of the pathomorphologic form, the magnitude of the neoplasia foci is directly correlated with excess accumulation of nitric oxide and the level of hypoproteinemia, and vice versa – the content of ceruloplasmin. Further research should be undertaken to study the hemostatic status in certain nosological forms of breast tumours in dogs, which will improve the diagnosis and development of effective treatment protocols.


Abdelmegeed, S. M., & Mohammed, S. (2018). Canine mammary tumors as a model for human disease. Oncology Letters, 15(6), 8195–8205.

Adesanya, M. A., Maraveyas, A., & Madden, L. A. (2016). PO-27 – thrombin generation in pancreatic cancer and multiple myeloma with use of calibrated automated thrombography. Thrombosis Research, 140(l), 186.

Al-Mansour, M. A., Kubba, M. A., Al-Azreg, S. A., & Dribika, S. A. (2018). Comparative histopathology and immunohistochemistry of human and canine mammary tumors. Open Veterinary Journal, 8(3), 243–249.

Andreasen, E. B., Tranholm, M., Wiinberg, B., Markussen, B., & Kristensen, A. T. (2012). Haemostatic alterations in a group of canine cancer patients are associated with cancer type and disease progression. Acta Veterinaria Scandinavica, 54, 3.

Andreeva, L. I., Kozhemjakin, L. A., & Kishkun, A. A. (1988). Modifikacija metoda opredelenija perekisej lipidov v teste s tiobarbiturovoj kislotoj [Modification of the method for determination of lipid peroxides in the test with thiobarbituric acid]. Laboratornoe Delo, 11, 41–43 (in Russian).

Aresu, L., Giantin, M., Morello, E., Vascellari, M., Castagnaro, M., Lopparelli, R., Zancanella, V., Granato, A., Garbisa, S., Aricò, A., Bradaschia, A., Mutinelli, F., & Dacasto, M. (2011). Matrix metalloproteinases and their inhibitors in canine mammary tumors. BMC Veterinary Research, 7, 33.

Ariyarathna, H., de Silva, N., Aberdein, D., Kodikara, D., Jayasinghe, M., Adikari, R., & Munday, J. S. (2018). Clinicopathological diversity of canine mammary gland tumors in Sri Lanka: A one-year survey on cases presented to two veterinary practices. Veterinary Sciences, 5(2), 46.

Astrup, T., & Mullertz, S. (1952). The fibrin plate metod for estimating fibrinolitic activity. Archives of Biochemistry and Biophysics, 40, 346–351.

Bauer, N., & Moritz, A. (2013). Characterisation of changes in the haemostasis system in dogs with thrombosis. Journal of Small Animal Practice, 54(3), 129–136.

Belicer, V. O., Varec’ka, T. V., & Veremjejenko, K. M. (1997). Kil’kisne vyznachennja fibrynogenu v plazmi krovi ljudyny [Quantitative determination of fibrinogen in human plasma]. Laboratorna Diagnostyka, 2, 53–55 (in Ukrainian).

Bely, D. D., Rublenko, M. V., Rublenko, S. V., Yevtushenko, I. D., Suslova, N. I., & Samoyuluk, V. V. (2018). Pharmacological correction of the hemostasis system for the surgical treatment of bitches with tumours of the mammary gland. Regulatory Mechanisms in Biosystems, 9(3), 353–362.

Benavente, M. A., Bianchi, C. P., & Aba, M. A. (2016). Canine mammary tumors: Risk factors, prognosis and treatments. Journal of Veterinary Advances, 6(8), 1291–1300.

Burrai, G., Tanca, A., De Miglio, M., Abbondio, M., Pisanu, S., Polinas, M., Pirino, S., Mohammed, S., Uzzau, S., Addis, M., & Antuofermo, E. (2015). Investigation of HER2 expression in canine mammary tumors by antibody-based, transcriptomic and mass spectrometry analysis: Is the dog a suitable animal model for human breast cancer? Tumor Biology, 36(11), 9083–9091.

Caine, G. J., Stonelake, P. S., Lip, G. Y., & Kehoe, S. T. (2002). The hypercoagulable state of malignancy: Pathogenesis and current debate. Neoplasia, 4, 465–473.

Cassali, G. D., Bertagnolli, A. C., Ferreira, E., Damasceno, K. A., Gamba, C. O., & Campos, C. B. (2012). Canine mammary mixed tumours. A review. Veterinary Medicine International, 2012, 7.

Cerovšek, M., Plavec, T., Zrimšek, P., Pogačnik, M., & Zabavnik Piano, J. (2013). Clinicopathological survey of 56 canine malignant mammary tumours in Slovenia. Slovenian Veterinary Research, 50(3), 93–102.

Chang, S.-C., Chang, C.-C., Chang, T.-J., & Wong, M.-L. (2005). Prognostic factors associated with survival two years after surgery in dogs with malignant mammary tumors: 79 cases (1998–2002). Journal of the American Veterinary Medical Association, 227(10), 1625–1629.

Chapin, J. C., & Hajjar, K. A. (2015). Fibrinolysis and the control of blood coagulation. Blood Reviews, 29(1), 17–24.

Docampo, M. J., Cabrera, J., Rabanal, R. M., & Bassols, A. (2011) Expression of matrix metalloproteinase-2 and -9 and membrane-type 1 matrix metalloproteinase in melanocytic tumors of dogs and canine melanoma cell lines. American Journal of Veterinary Research, 72(8), 1087–1096.

Dudа, N. С., Valle, S. F., Matheus, J. P., Angeli, N. C., Vieira, L. C., Oliveira, L. O., Sonne, L., & González, F. H. (2017). Paraneoplastic hematological, biochemical, and hemostatic abnormalities in female dogs with mammary neoplasms. Pesquisa Veterinária Brasileira, 37(5), 479–484.

Falanga, A., Marchetti, M., & Vignoli, A. (2013). Coagulation and cancer: Biological and clinical aspects. Journal of Thrombosis and Haemostasis, 11(2), 223–233.

Ferreira, E., Bertagnolli, A. C., Cavalcanti, M. F., Schmitt, F. C., & Cassali, G. D. (2009). The relationship between tumour size and expression of prognostic markers in benign and malignant canine mammary tumours. Veterinary and Comparative Oncology, 7, 230–235.

Gerry, A. P., & Malcolm, J. B. (2007). Clinical stage, therapy, and prognosis in canine anal sac gland carcinoma. Journal of Veterinary Internal Medicine, 21(2), 274–280.

Goldschmidt, M., Peña, L., Rasotto, R., & Zappulli, V. (2011). Classification and grading of canine mammary tumors. Veterinary Pathology, 48(1), 117–131.

Golikov, P. P. (2004). Oksid azota v klinike neotlozhnyh zabolevanij [Nitric oxide in the clinic for urgent diseases]. Medpraktika, Moscow (in Russian).

Graf, C., & Ruf, W. (2018). Tissue factor as a mediator of coagulation and signaling in cancer and chronic inflammation. Thrombosis Research, 164(1), 143–147.

Gruber, E. J., Catalfamo, J. L., & Stokol, T. (2016). Role of tissue factor expression in thrombin generation by canine tumor cells. American Journal of Veterinary Research, 77(4), 404–412.

Kaszak, I., Ruszczak, A., Kanafa, S., Kacprzak, K., Król, M., & Jurka, P. (2018). Current biomarkers of canine mammary tumors. Acta Veterinaria Scandinavica, 60, 66.

Kolodziejczyk-Czepas, J., Sieradzka, M., Moniuszko-Szajwaj, B., Pecio, Ł., Ponczek, M. B., Nowak, P., & Stochmal, A. (2017). The role of fibrinogen, fibrin and fibrin(ogen) degradation products (FDPs) in tumor progression. International Journal of Biological Macromolecules, 99, 141–150.

Kristensen, A. T., Wiinberg, B., Jessen, L. R., Andreasen, E., & Jensen, A. L. (2008). Evaluation of human recombinant tissue factor-activated thromboelastography in 49 dogs with neoplasia. Journal of Veterinary Internal Medicine, 22(1), 140–147.

Lallo, M. A., Ferrarias, T. M., Stravino, A., Juliana, F. M., Rodriguez, R., & Zucare, L. C. (2016). Нematologic abnormalities in dogs bearing mammary tumors. Revista Brasileira de Ciência Veterinária, 23, 3–8.

Lima, L. G., & Monteiro, R. Q. (2013). Activation of blood coagulation in cancer: Implications for tumour progression. Bioscience Reports, 33(5), 701–710.

Macotpet, A., Suksawat, F., Sukon, P., Pimpakdee, K., Pattarapanwichien, E., Tangrassameeprasert, R., & Boonsiri, P. (2013). Oxidative stress in cancer-bearing dogs assessed by measuring serum malondialdehyde. BMC Veterinary Research, 11, 101.

Marchetti, M., Diani, E, ten Cate, H., & Falanga, A. (2012). Characterization of the thrombin generation potential of leukemic and solid tumor cells by calibrated automated thrombography. Haematologica, 97(8), 1173–1180.

Marconato, L., Romanelli, G., Stefanello, D., Giacoboni, C., Bonfanti, U., Bettini, G., Finotello, R., Verganti, S., Valenti, P., Ciaramella, L., & Zini, E. (2009). Prognostic factors for dogs with mammary inflammatory carcinoma: 43 cases (2003–2008). Journal of the American Veterinary Medical Association, 235(8), 967–972.

Marschner, C. B., Wiinberg, B., Tarnow, I., Markussen, B., Kühnel, L., Bochsen, L., & Kristensen, A. T. (2018). The influence of inflammation and hematocrit on clot strength in canine thromboelastographic hypercoagulability. Journal of Veterinary Emergency and Critical Care, 28(1), 20–30.

Morrow, M. (1996). Role of axillary dissection in breast cancer management. Annals of Surgical Oncology, 3(3), 233–234.

Orang, E., Marzony, E. T., & Afsharfard, A. (2013). Predictive role of tumor size in breast cancer with axillary lymph node involvement – can size of primary tumor be used to omit an unnecessary axillary lymph node dissection? Asian Pacific Journal of Cancer Prevention, 14(2), 717–722.

Peña, L., Gama, A., Goldschmidt, M., Abadie, J., Benazzi, C., Castagnaro, M., Díez, L., Gärtner, F., Hellmén, E., Kiupel, M., Millán, Y., Miller, M., Nguyen, F., Poli, A., Sarli, G., Zappulli, V., & de las Mulas, J. (2014). Canine mammary tumors: A review and consensus of standard guidelines on epithelial and myoepithelial phenotype markers, HER2, and hormone receptor assessment using immunohistochemistry. Veterinary Pathology, 51(1), 127–145.

Philibert, J. C., Snyder, P. W., Glickman, N., Glickman, L. T., Knapp, D. W., & Waters, D. J. (2003). Influence of host factors on survival in dogs with malignant mammary gland tumors. Journal of Veterinary Internal Medicine, 17(1), 102–106.

Pollan, M., Pastor-Barriuso, R., Ardanaz, E., Argüelles, M., Martos, C., Galcerán, J., Sánchez-Pérez, M.-J., Chirlaque, M.-D., Larrañaga, N., Martínez-Cobo, R., Tobalina, M.-C., Vidal, E., Marcos-Gragera, R., Mateos, A., Garau, I., Rojas-Martín, M.-D., Jiménez, R., Torrella-Ramos, A., Perucha, J., Pérez-de-Rada, M.-E., González, S., Rabanaque, M.-J., Borràs, J., Navarro, C., Hernández, E., Izquierdo, Á., López-Abente, G., & Martínez, C. (2009). Recent changes in breast cancer incidence in Spain, 1980–2004. Journal of the National Cancer Institute, 101, 1584–1591.

Quick, A. J. (1974). Hemmorragic disease and pathology of hemostasis. Springfield.

Ruf, W., Rothmeier, A., & Graf, C. (2016). Targeting clotting proteins in cancer therapy – progress and challenges. Thrombosis Research, 140(1), 1–7.

Sierko, E., & Wojtukiewicz, M. (2007). Inhibition of platelet function: Does it offer a chance of better cancer progression control? Journal of Thrombosis and Haemostasis, 33(7), 712–721.

Soares, N. P., Medeiros, A. A., Castro, I. P., Wilson, T. M., Moreira, T. A., & Andrade, M. B. (2017). Prognostic factors in canine mammary carcinomas and HER2 expression relationship. Acta Scientiae Veterinariae, 45, 1443.

Sorenmo, K. U., Rasotto, R., Zappulli, V., & Goldschmidt, M. H. (2011). Development, anatomy, histology, lymphatic drainage, clinical features, and cell differentiation markers of canine mammary gland neoplasms. Veterinary Pathology, 48(1), 85–97.

Stockhaus, C., Kohn, B., Rudolph, R., Brunnberg, L., & Giger, U. (1999). Correlation of haemostatic abnormalities with tumour stage and characteristics in dogs with mammary carcinoma. Journal of Small Animal Practice, 40, 326–331.

Vareckaja, T. V., Mihajlovskaja, L. I., & Svital'skaja, L. A. (1992). Opredelenie rastvorimogo fibrina v plazme krovi [Determination of soluble fibrin in blood plasma]. Klinicheskaja Laboratornaja Diagnostika, 7–8, 10–14 (in Russian).

Veremeenko, K. N., Volohonskaja, L. I., & Kizim, A. I. (1978). Metody opredelenija prekallikrein-kallikreinovoj sistemy v krovi cheloveka [Methods for the determination of prekallikrein-kallikrein system in human blood]. Kyiv (in Russian).

Vilar Saavedra, P., Lara García, A., Zaldívar López, S., & Couto, G. (2011). Hemostatic abnormalities in dogs with carcinoma: A thromboelastographic characterization of hypercoagulability. Veterinary Journal, 190(2), 78–83.

Wojtukiewicz, M. Z., Sierko, E., Klement, P., & Rak, J. (2001). The hemostatic system and angiogenesis in malignancy. Neoplasia, 3(5), 371–384.

Wojtukiewicz, M., Sierko, E., & Rak, J. (2004). Contribution of the hemostatic system to angiogenesis in cancer. Seminars in Thrombosis and Hemostasis, 30(1), 5–20.

Yamagami, T., Kobayashi, T., Takahashi, K., & Sugiyama, M. (1996). Prognosis for canine malignant mammary tumors based on TNM and histologic classification. Journal of Veterinary Medical Science, 58(11), 1079–1083.

How to Cite
Bely, D. D., Rublenko, M. V., Smoyuluk, V. V., Yevtushenko, I. D., & Maslikov, S. N. (2019). Breast tumour size as a predictor of hemostatic system status and endothelial function in dogs . Regulatory Mechanisms in Biosystems, 10(3), 300-305.