Effect of implants of hydroxyapatite with tricalcium phosphates alloyed with Si on histomorphological and biochemical parameters in cases of bone defects of rabbits

  • V. O. Chemerovskiy Bila Tserkva National Agrarian University
  • M. V. Rublenko Bila Tserkva National Agrarian University
  • S. V. Rublenko Bila Tserkva National Agrarian University
  • N. V. Ulanchych Institute of Problems of Materials Science named after I. N. Frantsevich
  • S. O. Firstov Institute of Problems of Materials Science named after I. N. Frantsevich
  • V. V. Kolomiiets Institute of Problems of Materials Science named after I. N. Frantsevich
Keywords: bone markers; nitrogen oxide; tartrate-resistant acid phosphatase; bone isoenzyme of alkaline phosphatase.

Abstract

Complex comminuted fractures are accompanied by development of bone defects and loss of reparative potential of the bone tissue in the region of the trauma. This brings the necessity of using implants with optimum osteoconductive and osteointegration properties. The objective of the study was determining the condition of biochemical bone markers and peculiarities of histomorphological changes under the influence of ceramic hydroxyapatite (HA) implants with various physical-chemical properties in the conditions of diaphyseal bone defects in rabbits. We composed control and experimental groups of rabbits with 10 individuals in each with diaphyseal bone defects (3 mm) of the radial bones formed under general anesthesia. In one experimental group, they were filled with granules of hydroxyapatite with α-tricalcium phosphate, and in the second group – with β-tricalcium phosphate, alloyed with Si. In the control rabbits, the defects healed under a blood clot. Blood was analyzed on the 3rd, 7th, 14th, 21st and 42nd days, and as reference we used biochemical parameters of blood of clinically healthy rabbits (n = 10). Bone biopsied materials were taken on days 21–42 under general anesthesia. When using hydroxyapatite with β-tricalcium phosphate, alloyed with Si, we determined early intensification of the levels of nitrogen oxide, angiogenesis and development of bone regenerate in conditions of shortening of inflammatory resorption phase, which was verified according to the level of tartrate-resistant acid phosphatase. According to the level of bone isoenzyme of alkaline phosphatase in the blood serum of animals of the control group, the reparative osteogenesis developed slowly and peaked on day 42, whereas in animals implanted with α-tricalcium phosphate, its development peaked peaked on days 14–42, and when using Si-alloy – on days 7–14. Histomorphologically, on the 21st day, in the case of replacement of bone defect with hydroxyapatite with α-tricalcium phosphate, coarse-fibered type of bone regenerate developed with no dense contact with the elements of the regenerate, while spongy bone trabeculae occurred when hydroxyapatite was applied with β-tricalcium phosphate alloyed with Si, and the control rabbits were observed to be in the stage of cartilaginous callus. On the 42nd day, under the influence of implants of hydroxyapatite with α-tricalcium phosphate, the spongy bone tissue transformed into compact tissue with further mineralization. With implants alloyed with Si, there occurred compact bone tissue, and bone regenerates of the control animals were regions of coarse-fibered and spongy bone tissue without dense contact with the parent bone. This study revealed that hydroxyapatite with β-tricalcium phosphate alloyed with Si had notable osteoinductive and osteointegrating properties, as indicated by early angiogenesis and osteoblast reaction, positive dynamics of the marker biochemical parameters with faster and better development of bone regenerate as spongy bone trabeculae.

References

Bahney, C. S., Zondervan, R. L., Allison, P., Theologis, A., Ashley, J. W., Ahn, J., Miclau, T., Marcucio, R. S., & Hankenson, K. D. (2018). Cellular biology of fracture healing. Journal of Orthopaedic Research, 37(2), 35–50.

Berchenko, G. N., Kesjan, G. A., Urazgyldeev, R. Z., Arsenev, Y. G., & Mykelayshvyly, D. S. (2006). Sravnytelnoe еksperymentalno-morfologycheskoe yssledovanye vlyjanyja nekotoryyh yspolzuemyyh v travmatologo-ortopedycheskoj praktyke kalcyj fosfatnyyh materyalov na aktyvyzacyju reparatyvnogo osteogeneza [Comparative experimental-morphological study of the effect of some calcium phosphate materials used in traumatological and orthopedic practice on the activation of reparative osteogenesis]. Bjulleten Vostochno-sybyrskogo Nauchnogo Centra Sybyrskogo Otdelenyja Rossyjskoj Akademyy Medycynskyh Nauk, 50(4), 327–333 (in Russian).

Chemerovskiy, V. O. (2020). Rentgenografichna, makromorfologichna i gematologichna ocinka gidroksyapatytnoi keramiky z riznymy fizyko-himichnymy vlastyvostjamy [X-ray, macromorphological and hematological evaluation of hydroxyapatite ceramics with different physical and chemical properties]. Naukovyj Visnyk Veterynarnoi Medycyny, 154(1), 140–152 (in Ukrainian).

Deev, R. V., Drobyyshev, A. J., & Bozo, Y. J. (2015). Ordynarnyye y aktyvyrovannyye osteoplastycheskye materyalyy [Ordinary and activated osteoplastic materials]. Vestnyk Travmatologyy y Ortopedyy ym. N. N. Pryorova, 1, 51–69 (in Russian).

Deveci, M. Z. Y., Gonenci, R., Canpolat, I., & Kanat, Ö. (2020). In vivo biocompatibility and fracture healing of hydroxyapatite-hexagonal boron nitride-chitosan-collagen biocomposite coating in rats. Turkish Journal of Veterinary and Animal Sciences, 44(1), 76–88.

Gieling, F., Peters, S., Erichsen, C., Richards, R. G., Zeiter, S., & Moriarty, T. F. (2019). Bacterial osteomyelitis in veterinary orthopaedics: Pathophysiology, clinical presentation and advances in treatment across multiple species. The Veterinary Journal, 250(3), 44–54.

Golykov, P. P. (Ed.). (2004). Oksyd azota v klynyke neotlozhnyyh zabolevanyj [Nitric oxide in an emergency clinic]. Medpraktyka, Moscow (in Russian).

Grand, F., Guitton, J., & Goudable, J. (2001). Optimization of the measurement of nitrite and nitrate in serum by the Griess reaction. Annales de Biologie Clinique, 59(5), 559–565.

Guiot, L. P., Guillou, R. P., & Dejardin, L. M. (2019). Minimally invasive percutaneous medial plate-rod osteosynthesis for treatment of humeral shaft fractures in dog and cats: Surgical technique and prospective evaluation. Journal Veterinary Surgeons, 48, 41–51.

Guryn, A. N., Komlev, V. S., Fadeeva, Y. V., Petrakova, N. V., & Varda, N. S. (2012). Sravnytelnoe yssledovanye zameshhenyja defektov kostnoj tkany osteoplastycheskymy materyalamy na osnove α- y β-trykalcyjfosfata [Comparative study of replacement of bone tissue defects with osteoplastic materials based on α- and β-tricalcium phosphate]. Stomatology, 6(1), 16–21 (in Russian).

Gylev, M. V., Volokytyna, E. A., Antropova, Y. P., Bazarnyyj, V. V., Kutepov, S. M. (2020). Markeryy kostnogo remodelyrovanyja pry zameshhenyy defekta trabekuljarnoj kostnoj tkany rezorbyruemyymy y nerezorbyruemyymy osteoplastycheskymy materyalamy v eksperymente [Markers of bone remodeling in the replacement of trabecular bone tissue defect with resorbable and non-resorbable osteoplastic materials in experiment]. Genyj Ortopedyy, 26(2), 222–227 (in Russian).

Haaland, P. J., Sjostorm, L., Devor, M., & Haug, A. (2009). Appendicular fracture repair in dogs using the locking compression plate system: 47 cases. Veterinary and Comparative Orthopaedics and Traumatology, 22(4), 309–315.

Hwang, Y., Nyun, S., Hwang, W., & Kim G. (2017). Normal bone healing in three cloned dogs with long bone fractures. Turkish Journal of Veterinary and Animal Sciences, 41(1), 142–146.

Kadiroglu, E. T., Karayurek, F., & Akbalik, M. E. (2020). Evaluation of the effects of bone morphogenetic protein-2 on the healing of bone calvarial defects in ovariectomized rats. Turkish Journal of Veterinary and Animal Sciences, 44(3), 548–561.

Kanczler, J. M., & Oreffo, R. O. C. (2008). Osteogenesis and angiogenesis: The potential for engineering bone. European Cells and Materials, 15(2), 100–114.

Lafuente, P., Franch, J., Durall, I., & Manzanares, C. (2009). Experimental study of bone lengthening in dogs by means of backscattered scanning electron microscopy. Veterinary Surgeons, 38(3), 388–397.

Libardoni, R. N., Serafini, G. M. C., Oliveira, C., Schimites, P. I., Chaves, R. O., Feranti, J. P. S., Costa, C. A. S., Amaral, A. S., Raiser, A. G., & Soares, A. V. (2016). Appendicular fractures of traumatic etiology in dogs: 955 cases (2004–2013). Ciência Rural, 46(3), 542–546.

Lieshchova, M. A., Tishkina, N. M., Bohomaz, A. A., Gavrilin, P. M., & Brygadyrenko, V. V. (2018). Combined effect of glyphosphate, saccharin and sodium benzoate on rats. Regulatory Mechanisms in Biosystems, 9(4), 591–597.

Mohammed, A. B. K., Kiranjeet, S., Aswathy, G., Sarangom, S. B., Sowbharenya, C., Swapna, C. R., Sasikala, R., Akshay, K., & Naveen, K. (2019). Occurrence, classification, methods of fixation and outcome of long bone fractures in dogs: A review of 342 cases. International Journal of Advanced Biological Research, 9(4), 284–291.

Moskalec, A. Y., Bondaruk, O. S., & Shherbyna, O. V. (2012). Markeryy kostnogo metabolyzma y klynycheskoj praktyke [Bone metabolism markers and their role in clinical practice]. Laboratorna Dyagnostyka, 59(1), 67–72 (in Ukrainian).

Nakoskyn, A. N., Kovynka, M. A., Talashova, Y. A., Tushyna, V. N., & Luneva, S. N. (2018). Byohymycheskye markeryy osteogeneza y vospalenyja v syyvorotke krovy pry ksenoymplantacyy [Biochemical markers of osteogenesis and inflammation in blood serum with ksenoimplants]. Medycynskoj Vestnyk Severnogo Kavkaza, 13(1), 82–85 (in Russian).

Neill, E. O., Awale, G., Daneshm, L., Umerah, O., Obum, L., & Kevin W. H. (2018). The roles of ions on bone regeneration. Drug Discovery Today, 23(4), 879–890.

Oliveira, H. L., Rosa, W. L. O., Cuevas-Suarez, C. E., Carreno, N. L. V., Silva, A. F., Guim, T. N., Dellagostin, O. A., & Piva, E. (2017). Histological evaluation of bone repair with hydroxyapatite: A systematic review. Calcified Tissue International, 101(4), 341–354.

Onopryenko, G. A., & Voloshyn, V. P. (2017). Sovremennyye koncepcyy processov fyzyologycheskogo y reparatyvnogo osteogeneza [Modern concepts of physiological and reparative osteogenesis processes]. Almanah Klynycheskoj Medycynyy, 45(2), 79–93 (in Russian).

Paskalev, M. D. (2010). Comparative investigation on blood bone markers in normally healing and infected bone fracture models in dogs. Bulgarian Journal of Veterinary Medicine, 13(4), 235–244.

Rahmati, M., Pennisi, C. P., Budd, E., Mobasheri, A., & Mozafari, M. (2018). Biomaterials for regenerative medicine: Historical perspectives and current trends. Advances in Experimental Medicine end Biology, 11(4), 1–19.

Reznik, L. B., Erofeev, S. A., Stasenko, I. V., & Borzunov, D. Y. (2019). Morphological assessment of osteointegration of various implants for management of long bone defects (experimental study). Genij Ortopedii, 25(3), 318–323.

Roberts, T. T., & Rosenbaum, A. J. (2012). Bone grafts, bone substitutes and orthobiologics. Organogenesis, 8(4), 114–124.

Rublenko, M. V., & Shaganenko, V. S. (2011). Patogenetychna rol oksydu azotu v umovah zapalno-reparatyvnogo procesu pry perelomah trubchastyh kistok u sobak ta jogo korekcija Imunom-depo [The pathogenetic role of nitrogen oxide in the brain of the ignition-reparative process in fractures of the tubular cysts in dogs and in the immune system]. Biologija Tvaryn, 13(2), 340–346 (in Ukrainian).

Rublenko, M. V., Chemerovskiy, V. A., Andriiets, V. G., Ulyanchich, N. V., Kolomiets, V. V., & Koryak, S. A. (2020). Evaluation of usage of silicon-doped hydroxyapatite ceramics for treatment of fragmented bone fractures in dogs. Scientific Messenger of Lviv National University of Veterinary Medicine and Biotechnologies. Series: Veterinary Sciences, 22(99), 29–37.

Rublenko, M. V., Chemerovskiy, V. O., Vlasenko, V. M., & Ulyanchich, N. V. (2018). Ocinka osteointegracijnyh i osteoinduktyvnyh vlastyvostej keramiky, legovanoi kremnijem, za modelnyh perelomiv stegnovoi kistky u kroliv [Evaluation of osseointegration and osteoinductive properties of si ceramics based on model fractures of the femur in rabbits]. Naukovyj Visnyk Veterynarnoi Medycyny, 144(2), 37–46 (in Ukrainian).

Rublenko, S. V., & Jeroshenko, O. B. (2012). Monitoryng veterynarnoji dopomogy i struktura hirurgichnoji patologiji sered dribnyh domashnih tvaryn v umovah miskoji kliniky [Monitoring of veterinary care and the structure of surgical pathology among small pets in a city clinic]. Visnyk Sumskogo Nacionalnogo Agrarnogo Universytetu, 30(1), 150–154 (in Ukrainian).

Saglyan, A., Han, M. C., Karabulut, E., & Özkaraca, M. (2016). Research of the effects of autologous cancellous bone graft and hyaluronic acid on the healing of bone defects experimentally induced in rabbits. Turkish Journal of Veterinary and Animal Sciences, 40(4), 374–381.

Schlundt, C., Bucher, C. H., Tsitsilonis, S., Schell, H., Duda, G. N., & Schmidt-Bleek, K. (2018). Clinical and research approaches to treat non-union fracture. Current Osteoporosis Reports, 16(2), 155–168.

Semenjak, S. A., Rublenko, S. V., & Danylejko, J. M. (2014). Struktura perelomiv kistok u sobak v umovah megapolisu [The structure of fractures in dogs in the conditions of a metropolis]. Visnyk Bilocerkivskogo Derzhavnogo Agrarnogo Universytetu, 108(13), 218–223 (in Ukrainian).

Shimokawa, H., & Godo, S. (2016). Diverse functions of endothelial NO synthases system: NO and EDH. Journal Cardiovasc Pharmacol, 67(5), 361–366.

Shymon, V. M., Meklesh, J. J., Alfeldij, S. P., Stojka, V. V., Kochmar, V. M. (2020). Vykorystannja β-trykalcijfosfatu v skladi granul pry likuvanni perelomiv dovgyh kistok [The use of β-tricalcium phosphate in granules in the treatment of fractures of long bones]. ScienceRise: Medical Science, 34(1), 63–67 (in Ukrainian).

Sun, J., Jiao, K., Niu, L., Jiao, Y., Song, Q., Shen, L., Tay, F. R., & Chen, L. (2016). Intrafibrillar silicified collagen scaffold modulates monocyte to promote cell homing, angiogenesis and bone regeneration. Biomaterials, 113(3), 203–216.

Talashova, Y. A., Sylanteva, T. A., Kononovych, N. A., & Luneva, S. N. (2012). Ocenka byosovmestymosty ymplantacyonnyyh kalcyj-fosfatnyyh materyalov v zavysymosty ot yh myneralnogo sostava [Evaluation of the biocompatibility of implantation calcium-phosphate materials depending on their mineral composition]. Bjulleten Sybyrskoj Medycynyy, 21(3), 62–69 (in Russian).

Teljatnikov, A. V. (2013). Poshyrennja perelomiv kistok u sobak [Spreading of bone fractures in dogs]. Naukovyj Visnyk Veterynarnoi Medycyny, 101(11), 149–153 (in Ukrainian).

Torbenko, V. P., & Kasavyna, B. S. (1977). Funkcyonalnaja byohymyja kostnoj tkany [Functional biochemistry of bone tissue]. Medycyna, Moscow (in Russian).

Yang, C., Hwang, H. H., Jeong, S., Seo, D., Jeong, Y., Lee, D. Y., & Lee, K. (2018). Inducing angiogenesis with the controlled release of nitric oxide from biodegradable and biocompatible copolymeric nanoparticles. International Journal of Nanomedicine, 13, 6517–6530.

Yardımcı, C., Önyay, T., İnal, K. S., Özbakır, B. D., & Özak, A. (2018). Management of humeral fractures in dogs by using semicircular external fixator and intramedullary pin tie-in combination. Journal Home-page, 24(2), 295–300.

Published
2021-06-05
How to Cite
Chemerovskiy, V. O., Rublenko, M. V., Rublenko, S. V., Ulanchych, N. V., Firstov, S. O., & Kolomiiets, V. V. (2021). Effect of implants of hydroxyapatite with tricalcium phosphates alloyed with Si on histomorphological and biochemical parameters in cases of bone defects of rabbits . Regulatory Mechanisms in Biosystems, 12(2), 281-288. https://doi.org/10.15421/022137