Enzyme-like activity of nanomaterials


Keywords: mimetics; superoxide dismutase; catalase; oxidase; peroxidase; phosphatase.

Abstract

In modern conditions, nanomaterials, especially nanoparticles of metals and nonmetals, are increasingly used in various industries. Due to their unique properties, in particular, the ability of nanoparticles to exhibit an enzyme-like effect they are widely used in biology, medicine, biotechnology, the food industry and agriculture. Important advantages of nanoparticles are their size, which enables specific properties to be present: their large surface area, the ability to transfer molecules and the ability to protect them from degradation and release over a long time, the location of action and the specificity of interaction with biological structures. Nanoparticles play a special role in the processes of neutralizing the active forms of oxygen. It has been established that a number of nanoparticles, in particular, Fe, Mn, Zn, Ce, Si and Se oxides, have an enzyme-like activity mimicking that of some enzymes. By changing the degree of oxidation, these particles can regenerate and continuously catalyze the reaction of neutralizing superoxide anion radicals, thus fulfilling the function of SOD and being the first link in protecting tissues and cells from oxidative stress in physiological and pathological conditions. It is proved that nanoparticles Mn3O4, Fe3O4, Co3O4, CeO2, LaCoO3 and other elements can effectively dispose of hydrogen peroxide and other peroxides, showing catalase-like and peroxidase-like activity. Nanozymes are characterized that exhibit the activity of oxidases, peroxidases and phosphatase. The prospect of using mimetics for complex in vitro analyzes of high-sensitivity biomarker disease detection is shown. The possibility of effective multi-use of nanoparticles as antioxidants is indicated. There are good prospects for further research on properties and the use of polyfunctional particles that are easily synthesized, reliable and inexpensive. More work is needed to determine the interaction of enzymomimetics with biological molecules such as proteins, carbohydrates and lipids, and also to take into account the peculiarities of their metabolism, clearance, degradation, biocompatibility and side effects, since individual nanoparticles have the potential to be deposited in separate organs.

References

Amani, H., Habibey, R., Hajmiresmail, S. J., Latifi, S., Pazoki-Toroudi, H., & Akhavan, O. (2017). Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. Journal of Materials Chemistry B, 5(48), 9452–9476.


Armstrong, D., Bharali, D. J., Armstrong, D., & Bharali, D. (2013). Oxidative stress and nanotechnology. Methods and Protocols, 1028.


Baldim, V., Bedioui, F., Mignet, N., Margaill, I., & Berret, J. F. (2018). The enzyme-like catalytic activity of cerium oxide nanoparticles and its dependency on Ce3+ surface area concentration. Nanoscale, 10(15), 6971–6980.


Bandas, I. A., Krynytska, I. Y., Kulitska, M. I., & Korda, M. M. (2015). Nanoparticles: Importance today, classification, use in medicine, toxicity. Medychna ta Klinichna Khimiya, 17(3), 123–129 (in Ukrainian).


BarathManiKanth, S., Kalishwaralal, K., Sriram, M., Pandian, S. R. K., Youn, H. S., Eom, S., & Gurunathan, S. (2010). Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. Journal of Nanobiotechnology, 8(1), 16.


Batinić-Haberle, I., Rebouças, J. S., & Spasojević, I. (2010). Superoxide dismutase mimics: Chemistry, pharmacology, and therapeutic potential. Antioxidants and Redox Signaling, 13(6), 877–918.


Bhagat, S., Vallabani, N. S., Shutthanandan, V., Bowden, M., Karakoti, A. S., & Singh, S. (2018). Gold core/Ceria shell-based redox active nanozyme mimicking the biological multienzyme complex phenomenon. Journal of Colloid and Interface Science, 513, 831–842.


Bityutskyy, V. S., Tsekhmistrenko, О. S., Tsekhmistrenko, S. I., Spyvack, M. Y., & Shadura, U. M. (2017). Perspectives of cerium nanoparticles use in agriculture. The Animal Biology, 19(3), 9–17.


Cao, G. J., Jiang, X., Zhang, H., Croley, T. R., & Yin, J. J. (2017). Mimicking horseradish peroxidase and oxidase using ruthenium nanomaterials. RSC Advances, 7(82), 52210–52217.


Celardo, I., Pedersen, J. Z., Traversa, E., & Ghibelli, L. (2011). Pharmacological potential of cerium oxide nanoparticles. Nanoscale, 3(4), 1411–1420.


Chaudhry, Q., & Castle, L. (2015). Safety assessment of nano- and microscale delivery vehicles for bioactive ingredients. Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients, 348–357.


Chekman, I. S., Horchakova, N. O. & Simonov, P. V. (2017). Biologically active substances as nanostructures: A biochemical aspect. Klìnìčna Farmacìâ, 21(2), 15–22 (in Ukrainian).


Chen, H., Seiber, J. N., & Hotze, M. (2014). ACS select on nanotechnology in food and agriculture: A perspective on implications and applications. Journal Agricultural and Food Chemistry, 62(6), 1209–1212.


Chen, S., Quan, Y., Yu, Y. L., & Wang, J. H. (2017). Graphene quantum dot/silver nanoparticle hybrids with oxidase activities for antibacterial application. ACS Biomaterials Science and Engineering, 3(3), 313–321.


Chen, W., Chen, J., Feng, Y. B., Hong, L., Chen, Q. Y., Wu, L. F., Lin, X. H., & Xia, X. H. (2012). Peroxidase-like activity of water-soluble cupric oxide nanoparticles and its analytical application for detection of hydrogen peroxide and glucose. Analyst, 137(7), 1706–1712.


Chen, Z., Yin, J. J., Zhou, Y. T., Zhang, Y., Song, L., Song, M., Hu, S., & Gu, N. (2012). Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. Acs Nano, 6(5), 4001–4012.


Cheng, H., Zhang, L., He, J., Guo, W., Zhou, Z., Zhang, X., Hie, S., & Wei, H. (2016). Integrated nanozymes with nanoscale proximity for in vivo neurochemical monitoring in living brains. Analytical Chemistry, 88(10), 5489–5497.


Choleva, T. G., Gatselou, V. A., Tsogas, G. Z., & Giokas, D. L. (2018). Intrinsic peroxidase-like activity of rhodium nanoparticles, and their application to the colorimetric determination of hydrogen peroxide and glucose. Microchimica Acta, 185(1), 22.


Cîrcu, M., Nan, A., Borodi, G., Liebscher, J., & Turcu, R. (2016). Refinement of magnetite nanoparticles by coating with organic stabilizers. Nanomaterials, 6, 228.


Cormode, D. P., Gao, L., & Koo, H. (2018). Emerging biomedical applications of enzyme-like catalytic nanomaterials. Trends in Biotechnology, 36(1), 15–29.


Cui, M., Zhao, Y., Wang, C., & Song, Q. (2017). The oxidase-like activity of iridium nanoparticles, and their application to colorimetric determination of dissolved oxygen. Microchimica Acta, 184(9), 3113–3119.


Dalapati, R., Sakthivel, B., Ghosalya, M. K., Dhakshinamoorthy, A., & Biswas, S. (2017). A cerium-based metal-organic framework having inherent oxidase-like activity applicable for colorimetric sensing of biothiols and aerobic oxidation of thiols. CrystEngComm, 19(39), 5915–5925.


Das, S., Dowding, J. M., Klump, K. E., McGinnis, J. F., Self, W., & Seal, S. (2013). Cerium oxide nanoparticles: Applications and prospects in nanomedicine. Nanomedicine, 8(9), 1483–1508.


Deng, H. H., Lin, X. L., Liu, Y. H., Li, K. L., Zhuang, Q. Q., Peng, H. P., Liu, A. L., Xia, X. H., & Chen, W. (2017). Chitosan-stabilized platinum nanoparticles as effective oxidase mimics for colorimetric detection of acid phosphatase. Nanoscale, 9(29), 10292–10300.


Dhall, A., Burns, A., Dowding, J., Das, S., Seal, S., & Self, W. (2017). Characterizing the phosphatase mimetic activity of cerium oxide nanoparticles and distinguishing its active site from that for catalase mimetic activity using anionic inhibitors. Environmental Science: Nano, 4(8), 1742–1749.


Dong, Z., Luo, Q., & Liu, J. (2012). Artificial enzymes based on supramolecular scaffolds. Chemical Society Reviews, 41(23), 7890–7908.


Dutta, A. K., Maji, S. K., Srivastava, D. N., Mondal, A., Biswas, P., Paul, P., & Adhikary, B. (2012). Synthesis of FeS and FeSe nanoparticles from a single source precursor: A study of their photocatalytic activity, peroxidase-like behavior, and electrochemical sensing of H2O2. ACS Applied Materials & Interfaces, 4(4), 1919–1927.


Estevez, A. Y., Stadler, B., & Erlichman, J. S. (2017). In-vitro analysis of catalase-, oxidase- and SOD-mimetic activity of commercially available and custom-synthesized cerium oxide nanoparticles and assessment of neuroprotective effects in a hippocampal brain slice model of ischemia. The FASEB Journal, 31(1 Supplement), 693–695.


Esumi, K., Takei, N., & Yoshimura, T. (2003). Antioxidant-potentiality of gold-chitosan nanocomposites. Colloids and Surfaces B: Biointerfaces, 32, 117–123.


Fa, M., Yang, D., Gao, L., Zhao, R., Luo, Y., & Yao, X. (2018). The effect of AuNP modification on the antioxidant activity of CeO2 nanomaterials with different morphologies. Applied Surface Science, 2018, e277.


Faisal, M., Saquib, Q., Alatar, A. A., Al-Khedhairy, A. A., Hegazy, A. K., & Musarrat, J. (2013). Phytotoxic hazards of NiO-nanoparticles in tomato: A study on mechanism of cell death. Journal of Hazardous Materials, 250, 318–332.


Fan, Y., & Huang, Y. (2012). The effective peroxidase-like activity of chitosan-functionalized CoFe2O4 nanoparticles for chemiluminescence sensing of hydrogen peroxide and glucose. Analyst, 137(5), 1225–1231.


Farhangi-Abriz, S., & Torabian, S. (2018). Nano-silicon alters antioxidant activities of soybean seedlings under salt toxicity. Protoplasma, 2018, 1–10.


Fu, P. P. (2014). Introduction to the special issue: Nanomaterials-toxicology and medical applications. Journal of Food and Drug Analysis, 22(1), 1–2.


Gao, L., Fan, K., & Yan, X. (2017). Iron oxide nanozyme: A multifunctional enzyme mimetic for biomedical applications. Theranostics, 7(13), 3207–3227.


Garai-Ibabe, G., Möller, M., Saa, L., Grinyte, R., & Pavlov, V. (2014). Peroxidase-mimicking DNAzyme modulated growth of CdS nanocrystalline structures in situ through redox reaction: Application to development of genosensors and aptasensors. Analytical Chemistry, 86, 10059–10064.


Ghosh, S. (2006). Handbook of transcription factor NF-kappaB. CRC Press.


Gil, D., Rodriguez, J., Ward, B., Vertegel, A., Ivanov, V., & Reukov, V. (2017). Antioxidant activity of SOD and catalase conjugated with nanocrystalline ceria. Bioengineering, 4(1), 18.


Gordon, A. T., Lutz, G. E., Boninger, M. L., & Cooper, R. A. (2007). Introduction to nanotechnology: Potential applications in physical medicine and rehabilitation. American Journal of Physical Medicine and Rehabilitation, 86(3), 225–241.


Grillone, A., Li, T., Battaglini, M., Scarpellini, A., Prato, M., Takeoka, S., & Ciofani, G. (2017). Preparation, characterization, and preliminary in vitro testing of nanoceria-loaded liposomes. Nanomaterials, 7(9), 276.


Grinko, A. M., Brichka, A. V., Bakalinska, O. M., Brichka, S. Y., & Kartel, M. T. (2015). Hydrogen peroxide decomposition by nanocomposites kaolin clay – nanoceria. Poverkhnostʹ, 7, 274–284 (in Ukrainian).


Grulke, E., Reed, K., Beck, M., Huang, X., Cormack, A., & Seal, S. (2014). Nanoceria: Factors affecting its pro- and antioxidant properties. Environmental Science: Nano, 1(5), 429–444.


Guo, L., Huang, K., & Liu, H. (2016). Biocompatibility selenium nanoparticles with an intrinsic oxidase-like activity. Journal of Nanoparticle Research, 18(3), 74.


Guo, Y., Wang, H., Ma, X., Jin, J., Ji, W., Wang, X., Song, W., Zhao, B., & He, C. (2017). Fabrication of Ag–Cu2O/reduced graphene oxide nanocomposites as surface-enhanced raman scattering substrates for in situ monitoring of peroxidase-like catalytic reaction and biosensing. ACS Applied Materials and Interfaces, 9(22), 19074–19081.


He, W., Liu, Y., Yuan, J., Yin, J. J., Wu, X., Hu, X., Zhang, K., Liu, J., Chen, C., Ji, Y., & Guo, Y. (2011). Au@Pt nanostructures as oxidase and peroxidase mimetics for use in immunoassays. Biomaterials, 32(4), 1139–1147.


He, W., Wamer, W., Xia, Q., Yin, J. J., & Fu, P. P. (2014). Enzyme-like activity of nanomaterials. Journal of Environmental Science and Health, Part C, 32(2), 186–211.


Heckert, E. G., Seal, S., & Self, W. T. (2008). Fenton-like reaction catalyzed by the rare earth inner transition metal cerium. Environmental Science and Technology, 42(13), 5014–5019.


Hosnedlova, B., Kepinska, M., Skalickova, S., Fernandez, C., Ruttkay-Nedecky, B., Peng, Q., Baron, M., Melcova, M., Opatrilova, R., Zidkova, J., Bjørklund, G., Sochor, J., & Bjørklund, G. (2018). Nano-selenium and its nanomedicine applications: A critical review. International Journal of Nanomedicine, 13, 2107–2128.


Huang, B., Zhang, J., Hou, J., & Chen, C. (2003). Free radical scavenging efficiency of Nano-Se in vitro. Free Radical Biology and Medicine, 35(7), 805–813.


Jia, H., Yang, D., Han, X., Cai, J., Liu, H., & He, W. (2016). Peroxidase-like activity of the Co3O4 nanoparticles used for biodetection and evaluation of antioxidant behavior. Nanoscale, 8(11), 5938–5945.


Jia, W., Andaya, A., & Leary, J. A. (2012). Novel mass spectrometric method for phosphorylation quantification using cerium oxide nanoparticles and tandem mass tags. Analytical Chemistry, 84(5), 2466–2473.


Jiang, B., Duan, D., Gao, L., Zhou, M., Fan, K., Tang, Y., Xi, J., Bi, Y., Tong, Z., Gao, G. F., Xie, N., Tang, A., Nie, G., Liang M., & Xie, N. (2018). Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nature Protocols, 1.


Jiang, L., Yuan, R., Chai, Y., Yuan, Y., Bai, L., & Wang, Y. (2013). An ultrasensitive electrochemical aptasensor for thrombin based on the triplex-amplification of hemin/G-quadruplex horseradish peroxidase-mimicking DNAzyme and horseradish peroxidase decorated FeTe nanorods. Analyst, 138(5), 1497–1503.


Kajita, M., Hikosaka, K., Iitsuka, M., Kanayama, A., Toshima, N., & Miyamoto, Y. (2007). Platinum nanoparticle is a useful scavenger of superoxide anion and hydrogen peroxide. Free Radical Research, 41, 615–626.


Khedri, B., Shahanipour, K., Fatahian, S., & Jafary, F. (2018). Preparation of chitosan-coated Fe3O4 nanoparticles and assessment of their effects on enzymatic antioxidant system as well as high-density lipoprotein/low-density lipoprotein lipoproteins on wistar rat. Biomedical and Biotechnology Research Journal, 2(1), 68.


Kim, C. K., Kim, T., Choi. I.-Y., Soh, M., Kim, D., Kim, Y.-J., Jang, H., Yang, H.-S., Kim, J. Y., Park, H. K., Park, S. P., Park, S., Yu, T., Yoon, B.-W., Lee, S.-H., Hyeon, T. (2012). Ceria nanoparticles that can protect against ischemic stroke. Angewandte Chemie International Edition, 51, 11039–11043.


Kim, J., Takahashi, M., Shimizu, T., Shirasawa, T., Kajita, M., Kanayama, A., & Miyamoto, Y. (2008). Effects of a potent antioxidant, platinum nanoparticle, on the lifespan of Caenorhabditis elegans. Mechanisms of Ageing and Development, 129(6), 322–331.


Korsvik, C., Patil, S., Seal, S., & Self, W. T. (2007). Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chemical Communications, (10), 1056–1058.


Kozik, V. V., Shcherbakov, A. B., Ivanova, O. S., Spivak, N. Y., & Ivanov, V. K. (2016). Synthesis and biomedical applications of nanodispersed cerium dioxide. Izdatel'skiy Dom Tomskogo universiteta, Tomsk.


Kuchma, M. H., Komanski, C. B., Colon, J., Teblum, A., Masunov, A. E., Alvarado, B., Badu, S., Seal, S., Summy, J., & Baker, C. H. (2010). Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6(6), 738–744.


Lee, S. S., Song, W., Cho, M., Puppala, H. L., Nguyen, P., Zhu, H., Segatori, L., & Colvin, V. L. (2013). Antioxidant properties of cerium oxide nanocrystals as a function of nanocrystal diameter and surface coating. ACS Nano, 7(11), 9693–9703.


Li, H., Wang, T., Wang, Y., Wang, S., Su, P., & Yang, Y. (2018). Intrinsic triple-enzyme mimetic activity of V6O13 nanotextiles: Mechanism investigation and colorimetric and fluorescent detections. Industrial and Engineering Chemistry Research, 57(6), 2416–2425.


Li, J., Schiavo, S., Xiangli, D., Rametta, G., Miglietta, M. L., Oliviero, M., Changwen, W., & Manzo, S. (2018). Early ecotoxic effects of ZnO nanoparticle chronic exposure in Mytilus galloprovincialis revealed by transcription of apoptosis and antioxidant-related genes. Ecotoxicology, 2018, 1–16.


Li, M., & Zhang, C. (2016). γ-Fe2O3 nanoparticle-facilitated bisphenol A degradation by white rot fungus. Science Bulletin, 61(6), 468–472.


Li, P., Cao, G. X., Liu, Q., Guo, Y. Y., Dong, Y., Li, Z., & Wang, G. L. (2018). A novel strategy for amplified probing versatile biomolecules through a photoswitchable biocatalytic cascade. Sensors and Actuators B: Chemical, 262, 110–117.


Liao, H., Hu, L., Zhang, Y., Yu, X., Liu, Y., & Li, R. (2018). A highly selective colorimetric sulfide assay based on the inhibition of the peroxidase-like activity of copper nanoclusters. Microchimica Acta, 185(2), 143.


Lin, Y., Ren, J., & Qu, X. (2014). Nano-gold as artificial enzymes: Hidden talents. Advanced Materials, 26(25), 4200–4217.


Liu, B., Sun, Z., Huang, P. J. J., & Liu, J. (2015). Hydrogen peroxide displacing DNA from nanoceria: Mechanism and detection of glucose in serum. Journal of the American Chemical Society, 137(3), 1290–1295.


Liu, C. H., Yu, C. J., & Tseng, W. L. (2012). Fluorescence assay of catecholamines based on the inhibition of peroxidase-like activity of magnetite nanoparticles. Analytica Chimica Acta, 745, 143–148.


Liu, X., Wang, Q., Zhao, H., Zhang, L., Su, Y., & Lv, Y. (2012). BSA-templated MnO2 nanoparticles as both peroxidase and oxidase mimics. Analyst, 137(19), 4552–4558.


Liu, Y., Wu, H., Chong, Y., Wamer, W. G., Xia, Q., Cai, L., Nie, Z., Fu, P. P., & Yin, J. J. (2015). Platinum nanoparticles: Efficient and stable catechol oxidase mimetics. ACS Applied Materials and Interfaces, 7(35), 19709–19717.


Lu, L., Wang, X., Xiong, C., & Yao, L. (2015). Recent advances in biological detection with magnetic nanoparticles as a useful tool. Science China Chemistry, 58(5), 793–809.


Lu, X., Mestres, G., Singh, V. P., Effati, P., Poon, J. F., Engman, L., & Ott, M. K. (2017). Selenium-and tellurium-based antioxidants for modulating inflamemation and effects on osteoblastic activity. Antioxidants, 6(1), 13.


Luo, W., Li, Y. S., Yuan, J., Zhu, L., Liu, Z., Tang, H., & Liu, S. (2010). Ultrasensitive fluorometric determination of hydrogen peroxide and glucose by using multiferroic BiFeO3 nanoparticles as a catalyst. Talanta, 81(3), 901–907.


Lushchak, V. I. (2015). Free radicals, reactive oxygen species, oxidative stresses and their classifications. The Ukrainian Biochemical Journal, 87(6), 11–18.


McCormack, R. N., Mendez, P., Barkam, S., Neal, C. J., Das, S., & Seal, S. (2014). Inhibition of nanoceria’s catalytic activity due to Ce3+ site-specific interaction with phosphate ions. The Journal of Physical Chemistry C, 118(33), 18992–19006.


Moglianetti, M., De Luca, E., Pedone, D., Marotta, R., Catelani, T., Sartori, B., Amenitsch, H., Retta, S. F., & Pompa, P. P. (2016). Platinum nanozymes recover cellular ROS homeostasis in an oxidative stress-mediated disease model. Nanoscale, 8(6), 3739–3752.


Morry, J., Ngamcherdtrakul, W., & Yantasee, W. (2017). Oxidative stress in cancer and fibrosis: Opportunity for therapeutic intervention with antioxidant compounds, enzymes, and nanoparticles. Redox Biology, 11, 240–253.


Mu, J., Li, J., Zhao, X., Yang, E. C., & Zhao, X. J. (2018). Novel urchin-like Co9S8 nanomaterials with efficient intrinsic peroxidase-like activity for colorimetric sensing of copper (II) ion. Sensors and Actuators B: Chemical, 258, 32–41.


Naganuma, T. (2017). Shape design of cerium oxide nanoparticles for enhancement of enzyme mimetic activity in therapeutic applications. Nano Research, 10(1), 199–217.


Nelson, B. C., Johnson, M. E., Walker, M. L., Riley, K. R., & Sims, C. M. (2016). Antioxidant cerium oxide nanoparticles in biology and medicine. Antioxidants, 5(2), 15.


Pandey, V. P., Awasthi, M., Singh, S., Tiwari, S., & Dwivedi, U. N. (2017). A comprehensive review on function and application of plant peroxidases. Biochemistry and Analytical Biochemistry, 6, 308.


Park, E. J., Choi, J., Park, Y. K., & Park, K. (2008). Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology, 245(1–2), 90–100.


Paul, S., Saikia, J., Samdarshi, S., & Konwar, B. (2009). Investigation of antioxidant property of iron oxide particlesby 1′-1′ diphenylpicryl-hydrazyle (dpph) method. Journal of Magnetism and Magnetic Materials, 321, 3621–3623.


Popov, A. L., Shcherbakov, A. B., Zholobak, N. M., Baranchikov, A. Y., & Ivanov, V. K. (2017). Cerium dioxide nanoparticles as third-generation enzymes (nanozymes). Nanosystems: Physics, Chemistry, Mathematics, 8(6), 760–784.


Pratsinis, A., Kelesidis, G. A., Zuercher, S., Krumeich, F., Bolisetty, S., Mezzenga, R., Leroux, J. C., & Sotiriou, G. A. (2017). Enzyme-mimetic antioxidant luminescent nanoparticles for highly sensitive hydrogen peroxide biosensing. ACS Nano, 11(12), 12210–12218.


Pushkarev, V. M., Kovzun, O. I., Pushkarev, V. V., Huda, B. B., & Tronko, N. D. (2015). Chronic inflammation and cancer. Role of nuclear factor NF-κB (review of literature and own data). Journal of the National Academy of Medical Sciences of Ukraine, 21(3–4), 287–298.


Regulation, E. U. (2012). No 528/2012 of the European Parliament and of the Council of 22 May 2012 concerning the making available on the market and use of biocidal products. Official Journal of the European Union L, 167.


Saikia, J. P., Paul, S., Konwar, B. K., & Samdarshi, S. K. (2010). Nickel oxide nanoparticles: A novel antioxidant. Colloids and Surfaces B: Biointerfaces, 78, 146–148.


Samuel, E. L. G., Duong, M. T., Bitner, B. R., Marcano, D. C., Tour, J. M., & Kent, T. A. (2014). Hydrophilic carbon clusters as therapeutic, high-capacity antioxidants. Trends in Biotechnology, 32, 501–505.


Sandhir, R., Yadav, A., Sunkaria, A., & Singhal, N. (2015). Nano-antioxidants: An emerging strategy for intervention against neurodegenerative conditions. Neurochemistry International, 89, 209–226.


Schubert, D., Dargusch, R., Raitano, J., & Chan, S.-W. (2006). Cerium and yttrium oxide nanoparticles are neuroprotective. Biochemical and Biophysical Research Communications, 342, 86–91.


Shah, S. T., A Yehya, W., Saad, O., Simarani, K., Chowdhury, Z., A Alhadi, A., & Al-Ani, L. A. (2017). Surface functionalization of iron oxide nanoparticles with gallic acid as potential antioxidant and antimicrobial agents. Nanomaterials, 7(10), 306.


Sharpe, E., Andreescu, D., & Andreescu, S. (2011). Artificial nanoparticle antioxidants. ACS Symposium Series, 1083, 235–253.


Shcherbakov, А. B., Zholobak, N. М., Ivanov, V. К., Tretyakov, Y. D., & Spivak, N. Y. (2011). Nanomaterials based on the nanocrystalline ceric dioxode: Properties and use perspectives in biology and medicine. Biotechnologia Acta, 4(1), 9–28 (in Russian).


Shin, D. S., Di Donato, M., Barondeau, D. P., Hura, G. L., Hitomi, C., Berglund, J. A., Getzoff, E. D., Cary, S. C., & Tainer, J. A. (2009). Superoxide dismutase from the eukaryotic thermophile Alvinella pompejana: Structures, stability, mechanism, and insights into amyotrophic lateral sclerosis. Journal of Molecular Biology, 385(5), 1534–1555.


Sims, C. M., Hanna, S. K., Heller, D. A., Horoszko, C. P., Johnson, M. E., Bustos, A. R. M., Reipa, V., Riley, K. R., & Nelson, B. C. (2017). Redox-active nanomaterials for nanomedicine applications. Nanoscale, 9(40), 15226–15251.


Singh, S. (2016). Cerium oxide based nanozymes: Redox phenomenon at biointerfaces. Biointerphases, 11(4), 04B202.


Singh, S. (2017). Catalytically active nanomaterials: Artificial enzymes of next generation. Nanoscience and Technology, 5(1), 1–6.


Singh, S., Mitra, K., Shukla, A., Singh, R., Gundampati, R. K., Misra, N., Maiti, P., & Ray, B. (2016). Brominated graphene as mimetic peroxidase for sulfide ion recognition. Analytical Chemistry, 89(1), 783–791.


Singh, S., Singh, M., Mitra, K., Singh, R., Gupta, S. K. S., Tiwari, I., & Ray, B. (2017). Electrochemical sensing of hydrogen peroxide using brominated graphene as mimetic catalase. Electrochimica Acta, 258, 1435–1444.


Soares, C., Branco-Neves, S., de Sousa, A., Azenha, M., Cunha, A., Pereira, R., & Fidalgo, F. (2018). SiO2 nanomaterial as a tool to improve Hordeum vulgare L. tolerance to nano-NiO stress. Science of the Total Environment, 622, 517–525.


Song, Y., Zhao, M., Li, H., Wang, X., Cheng, Y., Ding, L., Fan, S., & Chen, S. (2018). Facile preparation of urchin-like NiCo2O4 microspheres as oxidase mimetic for colormetric assay of hydroquinone. Sensors and Actuators B: Chemical, 255, 1927–1936.


Su, L., Feng, J., Zhou, X., Ren, C., Li, H., & Chen, X. (2012). Colorimetric detection of urine glucose based ZnFe2O4 magnetic nanoparticles. Analytical Chemistry, 84(13), 5753–5758.


Sun, L., Ding, Y., Jiang, Y., & Liu, Q. (2017). Montmorillonite-loaded ceria nanocomposites with superior peroxidase-like activity for rapid colorimetric detection of H2O2. Sensors and Actuators B: Chemical, 239, 848–856.


Szekeres, M., Toth, I. Y., Illes, E., Hajdu, A., Zupko, I., Farkas, K., Oszlanczi, G., Tiszlavicz, L., & Tombacz, E. (2013). Chemical and colloidal stability of carboxylated core-shell magnetite nanoparticles designed for biomedical applications. International Journal of Molecular Sciences, 14, 14550–14574.


Toth, I. Y., Szekeres, M., Turcu, R., Saringer, S., Illes, E., Nesztor, D., & Tombacz, E. (2014). Mechanism of in situ surface polymerization of gallic acid in an environmental-inspired preparation of carboxylated core-shell magnetite nanoparticles. Langmuir, 30, 15451–15461.


Tsai, Y. Y., Oca-Cossio, J., Agering, K., Simpson, N. E., Atkinson, M. A., Wasserfall, C. H., Constantinidis, I., & Sigmund, W. (2007). Novel synthesis of cerium oxide nanoparticles for free radical scavenging. Nanomedicine, 2(3), 325–332.


Tsekhmistrenko, O. S., Tsekhmistrenko, S. I., Bityutskyy, V. S., Melnichenko, O. M., & Oleshko, O. A. (2018). Biomimetic and antioxidant activity of nano-crystalline cerium dioxide. Svit Medytsyny ta Biolohii, 63(1), 196–201.


van Bloois, E., Pazmiño, D. E. T., Winter, R. T., & Fraaije, M. W. (2010). A robust and extracellular heme-containing peroxidase from Thermobifida fusca as prototype of a bacterial peroxidase superfamily. Applied Microbiology and Biotechnology, 86(5), 1419–1430.


Verma, A. K. (2014). Anti-oxidant activities of biopolymeric nanoparticles: Boon or bane! Journal of Pharmacy Research, 8, 871–876.


Vernekar, A. A., Das, T., Ghosh, S., & Mugesh, G. (2016). A remarkably efficient MnFe2O4-based oxidase nanozyme. Chemistry – An Asian Journal, 11, 72–76.


Vineh, M. B., Saboury, A. A., Poostchi, A. A., Rashid, A. M. & Parivar, K. (2017). Stability and activity improvement of horseradish peroxidase by covalent immobilization on functionalized reduced graphene oxide and biodegradetion of high phenol concentration. International Journal of Biological Macromolecules, 17, 32776–32779.


Voeikov, V. L., & Yablonskaya, O. I. (2015). Stabilizing effects of hydrated fullerenes C60 in a wide range of concentrations on luciferase, alkaline phosphatese, and peroxidase in vitro. Electromagnetic Biology and Medicine, 34(2), 160–166.


Wang, G., Zhang, J., He, X., Zhang, Z., & Zhao, Y. (2017). Ceria nanoparticles as enzyme mimetics. Chinese Journal of Chemistry, 35(6), 791–800.


Wang, H., Li, S., Si, Y., Zhang, N., Sun, Z., Wu, H., & Lin, Y. (2014). Platinum nanocatalysts loaded on graphene oxide-dispersed carbon nanotubes with greatly enhanced peroxidase-like catalysis and electrocatalysis activities. Nanoscale, 6(14), 8107–8116.


Wang, H., Zhang, J., & Yu, H. (2007). Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: Comparison with selenomethionine in mice. Free Radical Biology and Medicine, 42(10), 1524–1533.


Wang, K., Song, J., Duan, X., Mu, J., & Wang, Y. (2017). Perovskite LaCoO3 nanoparticles as enzyme mimetics: Their catalytic properties, mechanism and application in dopamine biosensing. New Journal of Chemistry, 41(16), 8554–8560.


Wang, Q., Zhang, L., Shang, C., Zhang, Z., & Dong, S. (2016). Triple-enzyme mimetic activity of nickel-palladium hollow nanoparticles and their application in colorimetric biosensing of glucose. Chemical Communications, 52(31), 5410–5413.


Wei, H., & Wang, E. (2013). Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chemical Society Reviews, 42(14), 6060–6093.


Xu, C., & Qu, X. (2014). Cerium oxide nanoparticle: A remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Materials, 6(3), e90.


Yan, X., Song, Y., Wu, X., Zhu, C., Su, X., Du, D., & Lin, Y. (2017). Oxidase-mimicking activity of ultrathin MnO2 nanosheets in colorimetric assay of acetylcholinesterase activity. Nanoscale, 9(6), 2317–2323.


Yang, Y. C., Wang, Y. T., & Tseng, W. L. (2017). Amplified peroxidase-like activity in iron oxide nanoparticles using adenosine monophosphate: Application to urinary protein sensing. ACS Applied Materials and Interfaces, 9(11), 10069–10077.


Yang, Y., Mao, Z., Huang, W., Liu, L., Li, J., Li, J., & Wu, Q. (2016). Redox enzyme-mimicking activities of CeO2 nanostructures: Intrinsic influence of exposed facets. Scientific Reports, 6, 35344.


Yao, J., Cheng, Y., Zhou, M., Zhao, S., Lin, S., Wang, X., Wu, J., Li, S., & Wei, H. (2018). ROS scavenging Mn3O4 nanozymes for in vivo anti-inflammation. Chemical Science, 9(11), 2927–2933.


Zhang, X., He, S., Chen, Z., & Huang, Y. (2013). CoFe2O4 nanoparticles as oxidase mimic-mediated chemiluminescence of aqueous luminol for sulfite in white wines. Journal of Agricultural and Food Chemistry, 61(4), 840–847.


Zhao, J., Dong, W., Zhang, X., Chai, H., & Huang, Y. (2018). FeNPs@Co3O4 hollow nanocages hybrids as effective peroxidase mimics for glucose biosensing. Sensors and Actuators B: Chemical, 263, 575–584.


Zhao, M., Huang, J., Zhou, Y., Pan, X., He, H., Ye, Z., & Pan, X. (2013). Controlled synthesis of spinel ZnFe2O4 decorated ZnO heterostructures as peroxidase mimetics for enhanced colorimetric biosensing. Chemical Communications, 49(69), 7656–7658.


Zheng, W., Zou, H. F., Lv, S. W., Lin, Y. H., Wang, M., Yan, F., Sheng, Y., Song, Y. H., Chen, J., & Zheng, K. Y. (2017). The effect of nano-TiO2 photocatalysis on the antioxidant activities of Cu, Zn-SOD at physiological pH. Journal of Photochemistry and Photobiology B: Biology, 174, 251–260.


Zhu, A., Sun, K., & Petty, H. (2012). Titanium doping reduces superoxide dismutase activity, but not oxidase activity, of catalytic CeO2 nanoparticles. Inorganic Chemistry Communications, 15, 235–237.

Published
2018-07-08
How to Cite
Tsekhmistrenko, S. I., Bityutskyy, V. S., Tsekhmistrenko, O. S., Polishchuk, V. M., Polishchuk, S. A., Ponomarenko, N. V., Melnychenko, Y. O., & Spivak, M. Y. (2018). Enzyme-like activity of nanomaterials. Regulatory Mechanisms in Biosystems, 9(3), 469-476. https://doi.org/https://doi.org/10.15421/021870

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.