Regulation of redox processes in biological systems with the participation of the Keap1/Nrf2/ARE signaling pathway, biogenic selenium nanoparticles as Nrf2 activators

  • V. S. Bityutsky Bila Tserkva National Agrarian University
  • S. I. Tsekhmistrenko Bila Tserkva National Agrarian University
  • О. S. Tsekhmistrenko Bila Tserkva National Agrarian University
  • N. O. Tymoshok D. K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine
  • M. Y. Spivak D. K. Zabolotny Institute of Microbiology and Virology of the National Academy of Sciences of Ukraine
Keywords: redox processes; reactive oxygen species; nanotechnology; “green chemistry”; biogenic nanoselen; cytoprotective proteins; antioxidant proteins


The article is devoted to the mechanisms of regulation of redox processes in cells, a review of the Keap1 / Nrf2 / ARE redox-sensitive signaling system as a fundamental pathway that plays a key role in maintaining cellular redox homeostasis under stressful, inflammatory, carcinogenic and proapoptotic conditions. The structure of the cysteine-rich repressor protein Keap1, which is responsible for sensory perception of electrophiles and reactive oxygen species, the structure and functions of the transcription factor Nrf2, mechanisms of Nrf2 activation through the Keap1 / Nrf2 / ARE signaling system, which regulates the transcription and expression of cellular cytoprotective and antioxidant proteins, are described. Published data on the specificity of the interaction of the components of this cellular signaling pathway, the mechanisms of Keap1 dependent and independent adaptive response to the action of inductors, the role of biogenic selenium nanoparticles synthesized by green chemistry with the participation of bacteria in these processes are analyzed; features of Nrf2 induction depending on the type of bacteria and the stabilizing shell. It has been shown that biogenic selenium nanoparticles (BNSe), synthesized by different types of bacteria, activate the transcription factor Nrf2 using the Keap1-independent activation pathway through mitogen-protein kinases (MAPK): p38, ERK1 / 2 and AKT-mediated phosphorylation of Nrf2, protect the intestinal epithelial barrier function from the effects of oxidative damage, normalize mitochondrial function. A detailed understanding of thiol-dependent and independent redox signaling mechanisms under physiological and pathological conditions will lead to a deeper understanding of the redox component in human and animal diseases. The use of biogenic nanoselen, synthesized with the participation of various bacterial species, has been demonstrated to activate the Keap1 / Nrf2 / ARE signaling pathway, which may be of practical interest as a therapeutic target for many redox-mediated diseases.


Akçay, F. A., & Avci, A. (2020). Effects of process conditions and yeast extract on the synthesis of selenium nanoparticles by a novel indigenous isolate Bacillus sp. EKT1 and characterization of nanoparticles. Archives of Microbiology, 202, 2233–2243.

Auclair, J. R., Brodkin, H. R., D’Aquino, J. A., Petsko, G. A., Ringe, D., & Agar, J. N. (2013). Structural consequences of cysteinylation of Cu/Zn-superoxide dismutase. Biochemistry, 52(36), 6145–6150.

Babu, R. K., & Tay, Y. (2019). The Yin-Yang regulation of reactive oxygen species and microRNAs in cancer. International Journal of Molecular Sciences, 20(21), 5335.

Bai, X., Chen, Y., Hou, X., Huang, M., & Jin, J. (2016). Emerging role of NRF2 in chemoresistance by regulating drug-metabolizing enzymes and efflux transporters. Drug Metabolism Reviews, 48(4), 541–567.

Baird, L., & Dinkova-Kostova, A. T. (2011). The cytoprotective role of the Keap1–Nrf2 pathway. Archives of toxicology, 85(4), 241–272.

Baird, L., Llères, D., Swift, S., & Dinkova-Kostova, A. T. (2013). Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex. Proceedings of the National Academy of Sciences, 110(38), 15259–15264.

Bard, J. A., Goodall, E. A., Greene, E. R., Jonsson, E., Dong, K. C., & Martin, A. (2018). Structure and function of the 26S proteasome. Annual review of biochemistry, 87, 697–724.

Beck, M. A., Handy, J., & Levander, O. A. (2004). Host nutritional status: The neglected virulence factor. Trends in Microbiology, 12(9), 417–423.

Bellezza, I., Giambanco, I., Minelli, A., & Donato, R. (2018). Nrf2-Keap1 signaling in oxidative and reductive stress. Biochimica et Biophysica Acta – Molecular Cell Research, 1865(5), 721–733.

Betancor, M. B., Dam, T. M., Walton, J., Morken, T., Campbell, P. J., & Tocher, D. R. (2016). Modulation of selenium tissue distribution and selenoprotein expression in Atlantic salmon (Salmo salar L.) fed diets with graded levels of plant ingredients. British Journal of Nutrition, 115(8), 1325–1338.

Bityutsky, V., Tsekhmistrenko, O., Tsekhmistrenko, S., Spyvac, M., & Shadura, U. (2017). Perspectives of cerium nanopaticles use in agriculture. The Animal Biology, 19(3), 9–17.

Bityutskyy, V., Tsekhmistrenko, S., Tsekhmistrenko, O., Melnychenko, O., & Kharchyshyn, V. (2019). Effects of different dietary selenium sources including probiotics mixture on growth performance, feed utilization and serum biochemical profile of quails. In: Modern development paths of agricultural production. Springer, Cham. Pp. 623–632.

Bollong, M. J., Lee, G., Coukos, J. S., Yun, H., Zambaldo, C., Chang, J. W., Chin, E. N., Ahmad, I., Chatterjee, A. K., Lairson, L. L., Schultz, P. G., & Moellering, R. E. (2018). A metabolite-derived protein modification integrates glycolysis with KEAP1–NRF2 signalling. Nature, 562(7728), 600–604.

Breitenbach, M., Rinnerthaler, M., Weber, M., Breitenbach-Koller, H., Karl, T., Cullen, P., Basu, S., Haskova, D., & Hasek, J. (2018). The defense and signaling role of NADPH oxidases in eukaryotic cells. Wiener Medizinische Wochenschrift, 168(11–12), 286–299.

Brown, D. I., & Griendling, K. K. (2015). Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circulation Research, 116(3), 531–549.

Canning, P., Sorrell, F. J., & Bullock, A. N. (2015). Structural basis of Keap1 interactions with Nrf2. Free Radical Biology and Medicine, 88, 101–107.

Cullinan, S. B., Gordan, J. D., Jin, J., Harper, J. W., & Diehl, J. A. (2004). The Keap1-BTB protein is an adaptor that bridges Nrf2 to a Cul3-based E3 ligase: Oxidative stress sensing by a Cul3-Keap1 ligase. Molecular and Cellular Biology, 24(19), 8477–8486.

de Beus, M. D., Chung, J., & Colón, W. (2004). Modification of cysteine 111 in Cu/Zn superoxide dismutase results in altered spectroscopic and biophysical properties. Protein Science, 13(5), 1347–1355.

de la Vega, M. R., Dodson, M., Chapman, E., & Zhang, D. D. (2016). NRF2-targeted therapeutics: New targets and modes of NRF2 regulation. Current Opinion in Toxicology, 1, 62–70.

Dhapte, V., & Pokharkar, V. (2019). Nanosystems for drug delivery: Design, engineering, and applications. In: Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier. Pp. 321–345.

Di Meo, S., Reed, T. T., Venditti, P., & Victor, V. M. (2016). Role of ROS and RNS sources in physiological and pathological conditions. Oxidative Medicine and Cellular Longevity, 2016, 1245049.

Dinkova-Kostova, A. T., Holtzclaw, W. D., Cole, R. N., Itoh, K., Wakabayashi, N., Katoh, Y., Yamamoto, M., & Talalay, P. (2002). Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proceedings of the National Academy of Sciences, 99(18), 11908–11913.

Dinkova-Kostova, A. T., Kostov, R. V., & Canning, P. (2017). Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants. Archives of Biochemistry and Biophysics, 617, 84–93.

Eggler, A. L., Gay, K. A., & Mesecar, A. D. (2008). Molecular mechanisms of natural products in chemoprevention: Induction of cytoprotective enzymes by Nrf2. Molecular Nutrition and Food Research, 52(S1), S84–S94.

Fang, X., Wang, Y., Wang, Z., Jiang, Z., & Dong, M. (2019). Microorganism assisted synthesized nanoparticles for catalytic applications. Energies, 12(1), 190.

Fernandes, J., Hu, X., Smith, M. R., Go, Y. M., & Jones, D. P. (2018). Selenium at the redox interface of the genome, metabolome and exposome. Free Radical Biology and Medicine, 127, 215–227.

Finley, D., & Prado, M. A. (2020). The proteasome and its network: Engineering for adaptability. Cold Spring Harbor Perspectives in Biology, 12(1), a033985.

Finley, D., Ulrich, H. D., Sommer, T., & Kaiser, P. (2012). The ubiquitin – proteasome system of Saccharomyces cerevisiae. Genetics, 192(2), 319–360.

Forman, H. J., Maiorino, M., & Ursini, F. (2010). Signaling functions of reactive oxygen species. Biochemistry, 49(5), 835–842.

Franco, M. C., Carreras, M. C., & Hannibal, L. (2019). Molecular basis of redox signaling. Oxidative Medicine and Cellular Longevity, 2019, 6414975–6414975.

Furukawa, M., & Xiong, Y. (2005). BTB protein Keap1 targets antioxidant transcription factor Nrf2 for ubiquitination by the Cullin 3-Roc1 ligase. Molecular and Cellular Biology, 25(1), 162–171.

Goodfellow, M. J., Borcar, A., Proctor, J. L., Greco, T., Rosenthal, R. E., & Fiskum, G. (2020). Transcriptional activation of antioxidant gene expression by Nrf2 protects against mitochondrial dysfunction and neuronal death associated with acute and chronic neurodegeneration. Experimental Neurology, 328, 113247.

Guillin, O. M., Vindry, C., Ohlmann, T., & Chavatte, L. (2019). Selenium, selenoproteins and viral infection. Nutrients, 11(9), 2101.

Hawkins, K. E., Joy, S., Delhove, J. M., Kotiadis, V. N., Fernandez, E., Fitzpatrick, L. M., Whiteford, J. R., King, P. J., Bolanos, J. P., Duchen, M. R., Waddington, S. N., & McKay, T. R. (2016). NRF2 orchestrates the metabolic shift during induced pluripotent stem cell reprogramming. Cell Reports, 14(8), 1883–1891.

Held, J. M. (2020). Redox systems biology: Harnessing the sentinels of the cysteine redoxome. Antioxidants and Redox Signaling, 32(10), 659–676.

Hoffmann, P. R., & Berry, M. J. (2008). The influence of selenium on immune responses. Molecular Nutrition and Food Research, 52(11), 1273–1280.

Hou, J. C. (1997). Inhibitory effect of selenite and other antioxidants on complement-mediated tissue injury in patients with epidemic hemorrhagic fever. Biological Trace Element Research, 56(1), 125–130.

Huang, H. C., Nguyen, T., & Pickett, C. B. (2002). Phosphorylation of Nrf2 at Ser-40 by protein kinase C regulates antioxidant response element-mediated transcription. Journal of Biological Chemistry, 277(45), 42769–42774.

Israel, L. L., Braubach, O., Galstyan, A., Chiechi, A., Shatalova, E. S., Grodzinski, Z., Ding, H., Black, K. L., Ljubimova, J. Y., & Holler, E. (2019). A combination of tri-Leucine and angiopep-2 drives a polyanionic polymalic acid nanodrug platform across the blood-brain barrier. ACS Nano, 13(2), 1253–1271.

Itoh, K., Wakabayashi, N., Katoh, Y., Ishii, T., Igarashi, K., Engel, J. D., & Yamamoto, M. (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes and Development, 13(1), 76–86.

Jing, H., & Lin, H. (2015). Sirtuins in epigenetic regulation. Chemical Reviews, 115(6), 2350–2375.

Jones, D. P., & Sies, H. (2015). The redox code. Antioxidants and Redox Signaling, 23(9), 734–746.

Jung, B. J., Yoo, H. S., Shin, S., Park, Y. J., & Jeon, S. M. (2018). Dysregulation of NRF2 in cancer: From molecular mechanisms to therapeutic opportunities. Biomolecules and Therapeutics, 26(1), 57–68.

Kaidery, N. A., Ahuja, M., & Thomas, B. (2019). Crosstalk between Nrf2 signaling and mitochondrial function in Parkinson’s disease. Molecular and Cellular Neuroscience, 101, 103413.

Kalyanaraman, B., Cheng, G., Hardy, M., Ouari, O., Bennett, B., & Zielonka, J. (2018). Teaching the basics of reactive oxygen species and their relevance to cancer biology: Mitochondrial reactive oxygen species detection, redox signaling, and targeted therapies. Redox Biology, 15, 347–362.

Kansanen, E., Kuosmanen, S. M., Leinonen, H., & Levonen, A. L. (2013). The Keap1-Nrf2 pathway: Mechanisms of activation and dysregulation in cancer. Redox Biology, 1(1), 45–49.

Katoh, Y., Iida, K., Kang, M. I., Kobayashi, A., Mizukami, M., Tong, K. I., & Yamamoto, M. (2005). Evolutionary conserved N-terminal domain of Nrf2 is essential for the Keap1-mediated degradation of the protein by proteasome. Archives of Biochemistry and Biophysics, 433(2), 342–350.

Kim, S., Viswanath, A. N. I., Park, J. H., Lee, H. E., Park, A. Y., Choi, J. W., Kim, H., Londhe, A., Jang, B., Lee, J., Hwang. H., Lim, S., Pae, A., & Park, K. (2020). Nrf2 activator via interference of Nrf2-Keap1 interaction has antioxidant and anti-inflammatory properties in Parkinson’s disease animal model. Neuropharmacology, 167, 107989.

Kim, Y., & Jang, H. H. (2019). Role of Cytosolic 2-Cys Prx1 and Prx2 in Redox Signaling. Antioxidants, 8(6), 169.

Kobayashi, A., Kang, M. I., Okawa, H., Ohtsuji, M., Zenke, Y., Chiba, T., & Yamamoto, M. (2004). Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Molecular and Cellular Biology, 24(16), 7130–7139.

Kobayashi, M., & Yamamoto, M. (2005). Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxidants and Redox Signaling, 7(3–4), 385–394.

Kopacz, A., Kloska, D., Forman, H. J., Jozkowicz, A., & Grochot-Przeczek, A. (2020). Beyond repression of Nrf2: An update on Keap1. Free Radical Biology and Medicine, 157, 63–74.

Kosmachevskaya, O. V., Shumaev, K. B., & Topunov, A. F. (2019). Electrophilic Signaling: The role of reactive carbonyl compounds. Biochemistry (Moscow), 84(1), 206–224.

Kumar, A., & Kumar, S. P. (2020). Biogenic selenium nanoparticles for their therapeutic application. Asian Journal of Pharmaceutical and Clinical Research, 13(1), 4–9.

Lee, D., Xu, I. M. J., Chiu, D. K. C., Leibold, J., Tse, A. P. W., Bao, M. H. R., Yuen, V. W.-H., Chan, C. Y., Lai, R. K.-H., Chin, D. W. C., Chan, D. F. F., Cheung, T. T., & Chok, S. H. (2019). Induction of oxidative stress through inhibition of thioredoxin reductase 1 is an effective therapeutic approach for hepatocellular carcinoma. Hepatology, 69(4), 1768–1786.

Li, R., Jia, Z., & Zhu, H. (2019). Regulation of Nrf2 signaling. Reactive Oxygen Species (Apex, NC), 24, 312–322.

Li, S., Bañuelos, G. S., Wu, L., & Shi, W. (2014). The changing selenium nutritional status of Chinese residents. Nutrients, 6(3), 1103–1114.

Liu, P., Tian, W., Tao, S., Tillotson, J., Wijeratne, E. K., Gunatilaka, A. L., Zhang, D. D., & Chapman, E. (2019). Non-covalent NRF2 activation confers greater cellular protection than covalent activation. Cell Chemical Biology, 26(10), 1427–1435.

Lobanov, A. V., Hatfield, D. L., & Gladyshev, V. N. (2009). Eukaryotic selenoproteins and selenoproteomes. Biochimica et Biophysica Acta – General Subjects, 1790(11), 1424–1428.

Manoj, D., Saravanan, R., Santhanalakshmi, J., Agarwal, S., Gupta, V. K., & Boukherroub, R. (2018). Towards green synthesis of monodisperse Cu nanoparticles: An efficient and high sensitive electrochemical nitrite sensor. Sensors and Actuators B: Chemical, 266, 873–882.

Marchiol, L. (2018). Nanotechnology in agriculture: New opportunities and perspectives. New Visions in Plant Science, 9, 121–132.

Marengo, B., Nitti, M., Furfaro, A. L., Colla, R., Ciucis, C. D., Marinari, U. M., Pronzato, M. A., Traverso, N., & Domenicotti, C. (2016). Redox homeostasis and cellular antioxidant systems: Crucial players in cancer growth and therapy. Oxidative Medicine and Cellular Longevity, 2016, 6235641.

McMahon, M., Thomas, N., Itoh, K., Yamamoto, M., & Hayes, J. D. (2006). Dimerization of substrate adaptors can facilitate cullin-mediated ubiquitylation of proteins by a “Tethering” mechanism a two-site interaction model for the Nrf2-Keap1 complex. Journal of Biological Chemistry, 281(34), 24756–24768.

Misra, B. B., Langefeld, C., Olivier, M., & Cox, L. A. (2019). Integrated omics: Tools, advances and future approaches. Journal of Molecular Endocrinology, 62(1), R21–R45.

Miyata, Y., Matsuo, T., Sagara, Y., Ohba, K., Ohyama, K., & Sakai, H. (2017). A mini-review of reactive oxygen species in urological cancer: Correlation with NADPH oxidases, angiogenesis, and apoptosis. International Journal of Molecular Sciences, 18(10), 2214.

Nguyen, T., Sherratt, P. J., Huang, H. C., Yang, C. S., & Pickett, C. B. (2003). Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. Journal of Biological Chemistry, 278(7), 4536–4541.

Pacitti, D., Wang, T., Martin, S. A. M., Sweetman, J., & Secombes, C. J. (2014). Insights into the fish thioredoxin system: Expression profile of thioredoxin and thioredoxin reductase in rainbow trout (Oncorhynchus mykiss) during infection and in vitro stimulation. Developmental and Comparative Immunology, 42(2), 261–277.

Padmanabhan, B., Tong, K. I., Kobayashi, A., Yamamoto, M., & Yokoyama, S. (2008). Structural insights into the similar modes of Nrf2 transcription factor recognition by the cytoplasmic repressor Keap1. Journal of Synchrotron Radiation, 15(3), 273–276.

Pajares, M., Cuadrado, A., & Rojo, A. I. (2017). Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases. Redox Biology, 11, 543–553.

Pajares, M., Jiménez-Moreno, N., García-Yagüe, Á. J., Escoll, M., de Ceballos, M. L., Van Leuven, F., Rabanof, A., Yamamotog, M., Rojoa, A. I., & Cuadrado, A. (2016). Transcription factor NFE2L2/NRF2 is a regulator of macroautophagy genes. Autophagy, 12(10), 1902–1916.

Panieri, E., & Saso, L. (2019). Potential applications of NRF2 inhibitors in cancer therapy. Oxidative Medicine and Cellular Longevity, 2019, 8592348.

Panieri, E., Buha, A., Telkoparan-Akillilar, P., Cevik, D., Kouretas, D., Veskoukis, A., Skaperda, Z., Tsatsakis, A., Wallace, D., Suzen, S., & Saso, L. (2020b). Potential applications of NRF2 modulators in cancer therapy. Antioxidants, 9(3), 193.

Panieri, E., Telkoparan-Akillilar, P., Suzen, S., & Saso, L. (2020а). The NRF2/KEAP1 axis in the regulation of tumor metabolism: Mechanisms and therapeutic perspectives. Biomolecules, 10(5), 791.

Perillo, B., Di Donato, M., Pezone, A., Di Zazzo, E., Giovannelli, P., Galasso, G., Castoria, G., & Migliaccio, A. (2020). ROS in cancer therapy: The bright side of the moon. Experimental and Molecular Medicine, 52(2), 192–203.

Pinto, G., Radulovic, M., & Godovac‐Zimmermann, J. (2018). Spatial perspectives in the redox code – mass spectrometric proteomics studies of moonlighting proteins. Mass Spectrometry Reviews, 37(1), 81–100.

Pradedova, E. V., Nimaeva, O. D., & Salyaev, R. K. (2017). Redox processes in biological systems. Russian Journal of Plant Physiology, 64(6), 822–832.

Qiao, L., Dou, X., Yan, S., Zhang, B., & Xu, C. (2020). Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate diquat-induced intestinal barrier dysfunction in C57BL/6 mice through their antioxidant activity. Food and Function, 11(4), 3020–3031.

Rayman, M. P. (2012). Selenium and human health. The Lancet, 379(9822), 1256–1268.

Robledinos-Antón, N., Fernández-Ginés, R., Manda, G., & Cuadrado, A. (2019). Activators and inhibitors of NRF2: A review of their potential for clinical development. Oxidative Medicine and Cellular Longevity, 2019, 9372182.

Roy, K., Wu, Y., Meitzler, J. L., Juhasz, A., Liu, H., Jiang, G., Lu, J., Antony, S., & Doroshow, J. H. (2015). NADPH oxidases and cancer. Clinical Science, 128(12), 863–875.

Saab-Rincon, G., & Valderrama, B. (2009). Protein engineering of redox-active enzymes. Antioxidants and Redox Signaling, 11(2), 167–192.

Sadowska-Bartosz, I., & Bartosz, G. (2018). Redox nanoparticles: Synthesis, properties and perspectives of use for treatment of neurodegenerative diseases. Journal of Nanobiotechnology, 16(1), 87.

Samant, R. S., Livingston, C. M., Sontag, E. M., & Frydman, J. (2018). Distinct proteostasis circuits co-operate in nuclear and cytoplasmic protein quality control. Nature, 563, 407–411.

Shah, S. Z. A., Zhao, D., Hussain, T., Sabir, N., Mangi, M. H., & Yang, L. (2018). p62-Keap1-NRF2-ARE pathway: A contentious player for selective targeting of autophagy, oxidative stress and mitochondrial dysfunction in prion diseases. Frontiers in Molecular Neuroscience, 11, 310.

Sharma, D., Kanchi, S., & Bisetty, K. (2019). Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry, 12(8), 3576–3600.

Shcherbakov, A. B., Zholobak, N. M., & Ivanov, V. K. (2020). Biological, biomedical and pharmaceutical applications of cerium oxide. In: Cerium oxide (CeO₂): Synthesis, properties and applications. Elsevier. Pp. 279–358.

Shin, J. M., Lee, K. M., Lee, H. J., Yun, J. H., & Nho, C. W. (2019). Physalin A regulates the Nrf2 pathway through ERK and p38 for induction of detoxifying enzymes. BMC Complementary and Alternative Medicine, 19(1), 101.

Singh, C. K., Chhabra, G., Ndiaye, M. A., Garcia-Peterson, L. M., Mack, N. J., & Ahmad, N. (2018). The role of sirtuins in antioxidant and redox signaling. Antioxidants and Redox Signaling, 28(8), 643–661.

Snezhkina, A. V., Kudryavtseva, A. V., Kardymon, O. L., Savvateeva, M. V., Melnikova, N. V., Krasnov, G. S., & Dmitriev, A. A. (2019). ROS generation and antioxidant defense systems in normal and malignant cells. Oxidative Medicine and Cellular Longevity, 2019, 6175804.

Snyder, G. H., Cennerazzo, M. J., Karalis, A. J., & Locey, D. (1981). Electrostatic influence of local cysteine environments on disulfide exchange kinetics. Biochemistry, 20(23), 6509–6519.

Song, D., Cheng, Y., Li, X., Wang, F., Lu, Z., Xiao, X., & Wang, Y. (2017). Biogenic nanoselenium particles effectively attenuate oxidative stress-induced intestinal epithelial barrier injury by activating the Nrf2 antioxidant pathway. ACS Applied Materials and Interfaces, 9(17), 14724–14740.

Staurengo-Ferrari, L., Badaro-Garcia, S., Hohmann, M. S., Manchope, M. F., Zaninelli, T. H., Casagrande, R., & Verri, W. A. (2019). Contribution of Nrf2 modulation to the mechanism of action of analgesic and anti-inflammatory drugs in pre-clinical and clinical stages. Frontiers in Pharmacology, 9, 1536.

Stefanson, A., & Bakovic, M. (2014). Dietary regulation of Keap1/Nrf2/ARE pathway: Focus on plant-derived compounds and trace minerals. Nutrients, 6(9), 3777–3801.

Steinbrenner, H., Al-Quraishy, S., Dkhil, M. A., Wunderlich, F., & Sies, H. (2015). Dietary selenium in adjuvant therapy of viral and bacterial infections. Advances in Nutrition, 6(1), 73–82.

Taguchi, K., & Yamamoto, M. (2017). The KEAP1–NRF2 system in cancer. Frontiers in Oncology, 7, 85.

Tian, W., De La Vega, M. R., Schmidlin, C. J., Ooi, A., & Zhang, D. D. (2018). Kelch-like ECH-associated protein 1 (KEAP1) differentially regulates nuclear factor erythroid-2-related factors 1 and 2 (NRF1 and NRF2). Journal of Biological Chemistry, 293(6), 2029–2040.

Tonelli, C., Chio, I. I. C., & Tuveson, D. A. (2018). Transcriptional regulation by Nrf2. Antioxidants and Redox Signaling, 29(17), 1727–1745.

Tong, K. I., Katoh, Y., Kusunoki, H., Itoh, K., Tanaka, T., & Yamamoto, M. (2006). Keap1 recruits Neh2 through binding to ETGE and DLG motifs: Characterization of the two-site molecular recognition model. Molecular and Cellular Biology, 26(8), 2887–2900.

Tong, K. I., Padmanabhan, B., Kobayashi, A., Shang, C., Hirotsu, Y., Yokoyama, S., & Yamamoto, M. (2007). Different electrostatic potentials define ETGE and DLG motifs as hinge and latch in oxidative stress response. Molecular and Cellular Biology, 27(21), 7511–7521.

Tsekhmistrenko, O. S., Bityutskyy, V. S., Tsekhmistrenko, S. I., Kharchishin, V. M., Melnichenko, O. M., Rozputnyy, O. I., Malina, V. V., Prysiazhniuk, N. M., Melnichenko, Y. О., Vered, P. I., Shulko, O. P., & Onyshchenko L. S. (2020c). Nanotechnologies and environment: A review of pros and cons. Ukrainian Journal of Ecology, 10(3), 162–172.

Tsekhmistrenko, O. S., Tsekhmistrenko, S. I., Bityutskyy, V. S., Melnichenko, O. M., & Oleshko, O. A. (2018). Biomimetic and antioxidant activity of nanocrystalline cerium dioxide. World of Medicine and Biology, 14(63), 196–201.

Tsekhmistrenko, O., Bityutskyy, V., Tsekhmistrenko, S., Melnichenko, O., Tymoshok, N., & Spivak, M. (2019). Use of nanoparticles of metals and non-metals in poultry farming. Animal Husbandry Products Production and Processing, 2, 113–130.

Tsekhmistrenko, S. I., & Polishchuk, V. M. (2010). Vikovi osoblyvosti funktsionuvannia systemy antyoksydantnoho zakhystu krovi strausiv [Age specifics of functioning of the antioxidant defense system in the blood of ostriches]. Ukrainskyi Biokhimichnyi Zhurnal, 82(5), 92–97 (in Ukrainian).

Tsekhmistrenko, S. I., & Ponomarenko, N. V. (2013). Sklad lipidiv ta yikh peroksydne okyslennia u pidshlunkovii zalozi perepeliv za dii nitrativ i u razi zghodovuvannia nasinnia amarantu [Lipid content and peroxidation in the pancreas of quails under the effect of nitrates and in cases of feeding with seeds of amaranth]. Ukrainskyi Biokhimichnyi Zhurnal, 85(2), 84–92 (in Ukrainian).

Tsekhmistrenko, S. I., Bityutskyy, V. S., & Tsekhmistrenko, O. S. (2020b). Markers of oxidative stress in the blood of quails under the influence of selenium nanoparticles. Impact of modernity on science and practice. Abstracts of XVIII International Scientific and Practical Conference. Boston. Pp. 177–180.

Tsekhmistrenko, S. I., Bityutskyy, V. S., Tsekhmistrenko, O. S., Horalskyi, L. P., Tymoshok, N. O., & Spivak, M. Y. (2020). Bacterial synthesis of nanoparticles: A green approach. Biosystems Diversity, 28(1), 9–17.

Tsekhmistrenko, S. I., Bityutskyy, V. S., Tsekhmistrenko, O. S., Melnichenko, O. M., Kharchyshyn, V. M., Tymoshok, N. O., Ponomarenko, N. V., Polishchuk, S. A., Rol, N. V., Fedorchenko, M. M., Melnichenko, Y. O., Merzlova, H. V., Shulko, O. P., & Demchenko, A. A. (2020a). Effects of selenium compounds and toxicant action on oxidative biomarkers in quails. Ukrainian Journal of Ecology, 10(2), 232–239.

Tu, W., Wang, H., Li, S., Liu, Q., & Sha, H. (2019). The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging and disease, 10(3), 637–651.

Uruno, A., & Motohashi, H. (2011). The Keap1–Nrf2 system as an in vivo sensor for electrophiles. Nitric Oxide, 25(2), 153–160.

Villeneuve, N. F., Lau, A., & Zhang, D. D. (2010). Regulation of the Nrf2–Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxidants and Redox Signaling, 13(11), 1699–1712.

Wang, T., Yang, L., Zhang, B., & Liu, J. (2010). Extracellular biosynthesis and transformation of selenium nanoparticles and application in H2O2 biosensor. Colloids and Surfaces B: Biointerfaces, 80(1), 94–102.

Wang, X. J., Sun, Z., Villeneuve, N. F., Zhang, S., Zhao, F., Li, Y., Chen, W., Yi, X., Zheng, W., Wondrak, G. T., Wong, P. K., & Wong, P. K. (2008). Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis, 29(6), 1235–1243.

Wang, Z., Li, Q., Chen, Y., Cui, B., Li, Y., Besenbacher, F., & Dong, M. (2018). The ambipolar transport behavior of WSe 2 transistors and its analogue circuits. NPG Asia Materials, 10(8), 703–712.

Wen, Z., Liu, W., Li, X., Chen, W., Liu, Z., & Wen, J. (2019). A protective role of the NRF2-Keap1 pathway in maintaining intestinal barrier function. Oxidative Medicine and Cellular Longevity, 2019, 1759149.

Xia, Y., Zhao, Y., Zhang, F., Chen, B., Hu, X., Weir, M. D., Schneider, A., Jia, L., Gu, N., & Xu, H. H. (2019). Iron oxide nanoparticles in liquid or powder form enhanced osteogenesis via stem cells on injectable calcium phosphate scaffold. Nanomedicine: Nanotechnology, Biology and Medicine, 21, 102069.

Xiao, X., Song, D., Cheng, Y., Hu, Y., Wang, F., Lu, Z., & Wang, Y. (2019). Biogenic nanoselenium particles activate Nrf2‐ARE pathway by phosphorylating p38, ERK1/2, and AKT on IPEC‐J2 cells. Journal of Cellular Physiology, 234(7), 11227–11234.

Xu, C., Guo, Y., Qiao, L., Ma, L., Cheng, Y., & Roman, A. (2018). Biogenic synthesis of novel functionalized selenium nanoparticles by Lactobacillus casei ATCC 393 and its protective effects on intestinal barrier dysfunction caused by enterotoxigenic Escherichia coli K88. Frontiers in Microbiology, 9, 1129.

Yamamoto, M., Kensler, T. W., & Motohashi, H. (2018). The KEAP1-NRF2 system: A thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiological Reviews, 98(3), 1169–1203.

Yang, Y., Bazhin, A. V., Werner, J., & Karakhanova, S. (2013). Reactive oxygen species in the immune system. International Reviews of Immunology, 32(3), 249–270.

Yoshida, K., & Hisabori, T. (2016). Two distinct redox cascades cooperatively regulate chloroplast functions and sustain plant viability. Proceedings of the National Academy of Sciences, 113(27), E3967–E3976.

Yu, R., Mandlekar, S., Lei, W., Fahl, W. E., Tan, T. H., & Kong, A. N. T. (2000). p38 mitogen-activated protein kinase negatively regulates the induction of phase II drug-metabolizing enzymes that detoxify carcinogens. Journal of Biological Chemistry, 275(4), 2322–2327.

Zenkov, N. K., Menshchikova, E. B., & Tkachev, V. O. (2013). Keap1/Nrf2/ARE redox-sensitive signaling system as a pharmacological target. Biochemistry (Moscow), 78(1), 19–36.

Zhang, D. D., & Hannink, M. (2003). Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Molecular and Cellular Biology, 23(22), 8137–8151.

Zhang, D. D., Lo, S. C., Cross, J. V., Templeton, D. J., & Hannink, M. (2004). Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex. Molecular and Cellular Biology, 24(24), 10941–10953.

Zhang, J., Taylor, E. W., Bennett, K., Saad, R., & Rayman, M. P. (2020). Association between regional selenium status and reported outcome of COVID-19 cases in China. The American Journal of Clinical Nutrition, 111(6), 1297–1299.

Zhao, J., & Zeng, Z. (2020). Combined effects of AKT serine/threonine kinase 1 polymorphisms and environment on congenital heart disease risk: A case-control study. Medicine, 99(26), e20400.

Zhao, L., Cox, A. G., Ruzicka, J. A., Bhat, A. A., Zhang, W., & Taylor, E. W. (2000). Molecular modeling and in vitro activity of an HIV-1-encoded glutathione peroxidase. Proceedings of the National Academy of Sciences, 97(12), 6356–6361.

Zhao, R. Z., Jiang, S., Zhang, L., & Yu, Z. B. (2019). Mitochondrial electron transport chain, ROS generation and uncoupling. International Journal of Molecular Medicine, 44(1), 3–15.

Zheng, F., & Li, H. (2019). Evaluation of Nrf2 with exposure to nanoparticles. In: Nanotoxicity. Humana Press, New York. Pp. 229–246.

Zollman, S., Godt, D., Prive, G. G., Couderc, J. L., & Laski, F. A. (1994). The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proceedings of the National Academy of Sciences, 91(22), 10717–10721.

How to Cite
Bityutsky, V. S., Tsekhmistrenko, S. I., TsekhmistrenkoО. S., Tymoshok, N. O., & Spivak, M. Y. (2020). Regulation of redox processes in biological systems with the participation of the Keap1/Nrf2/ARE signaling pathway, biogenic selenium nanoparticles as Nrf2 activators . Regulatory Mechanisms in Biosystems, 11(4), 483-493.

Most read articles by the same author(s)