Effect of disinfectants on viability of Trichuris skrjabini eggs

  • V. Yevstafieva Poltava State Agrarian University
  • M. Petrenko Poltava State Agrarian University
  • R. Peleno Lviv National University of Veterinary Medicine and Biotechnologies named after S. Z. Gzhytskyj
  • O. Nikiforova State Biotechnological University
  • V. Vakulenko Poltava State Agrarian University
  • O. Reshetylo Sumy National Agrarian University
  • M. Kone Poltava State Agrarian University
Keywords: trichurosis; sheep; embryogeneses; chemical preparations; ovocidal effect; disinfestation.


The nematodoses are considered the most numerous group of cosmopolitan diseases among animal and human parasitoses. The representatives of the genus Trichuris attract special attention as pathogens of nematodoses. Their high fecundity, resistance to the influence of environmental factors and the ability to disperse create a serious ecological hazard and the risk of new outbreaks of infestation. The aim of the research was to establish the ovicidal efficiency of modern disinfectants on the embryogenesis of eggs of Trichuris skrjabini nematodes isolated from sheep. In laboratory conditions, two preparations were tested, DZPT-2 (mixture of glutaraldehyde, sodium dodecyl sulfate, essential oil) and Dixclor (mixture of sodium bisulfate, sodium chlorite, sodium percarbonate) at different concentrations and times of exposure. We established that DZPT-2 disinfectant showed a high level of ovicidal efficiency (97.5–100%) against T. skrjabini eggs at 4.5% concentration during exposure for 6–12 h and 5.0% concentration during exposure for 3–12 h. Dixclor showed a high level of ovicidal efficiency (100%) against Trichuris eggs at a concentration of 0.24% for exposures of 12 and 24 hours. Decreasing the concentration of disinfectants reduced the level of their ovicidal efficiency and led to the development of a greater number of viable eggs of T. skrjabini. Degenerative changes in the test cultures of T. skrjabini eggs caused by the tested disinfectants were characterized by the appearance and accumulation of air bubbles under the egg shell, the cessation of embryonic development at the bean-like embryo stage, loosening and resorption of the embryo inside the eggs, thinning and destruction of their shell, deformation of the eggs, and swelling of the egg plugs. Such destructive changes in eggs in experimental test cultures were also confirmed by the indicators of their morphometric parameters. Under the influence of DZPT-2 and Dixclor on the 54th day of cultivation, the length of the eggs was lower by 3.9%, and their width was greater by 4.8–5.1% compared to similar indicators in the control test culture. The obtained results allow one to recommend the tested disinfectants in defined and effective concentrations and exposures for effective control and prevention of trichurosis on livestock farms.


Bhattacharjee, K., Bora, S., & Deka, D. K. (2021). Prevalence of gastrointestinal parasites in sheep of Assam, India. International Journal of Current Microbiology and Applied Sciences, 10(2), 1805–1812.

Blaszkowska, J., Wojcik, A., Kurnatowski, P., & Szwabe, K. (2013). Geohelminth egg contamination of children's play areas in the city of Lodz (Poland). Veterinary Parasitology, 192, 228–233.

Bojar, H., & Kłapeć, T. (2018). Contamination of selected recreational areas in Lublin Province, Eastern Poland, by eggs of Toxocara spp., Ancylostoma spp. and Trichuris spp. Annals of Agricultural and Environmental Medicine, 25(3), 460–463.

Boyko, A. A., & Brygadyrenko, V. V. (2017). Changes in the viability of the eggs of Ascaris suum under the influence of flavourings and source materials approved for use in and on foods. Biosystems Diversity, 25(2), 162–166.

Boyko, O. O., & Brygadyrenko, V. V. (2019a). The impact of acids approved for use in foods on the vitality of Haemonchus contortus and Strongyloides papillosus (Nematoda) larvae. Helminthologia, 56(3), 202–210.

Boyko, O. O., & Brygadyrenko, V. V. (2019b). Nematocidial activity of aqueous solutions of plants of the families Cupressaceae, Rosaceae, Asteraceae, Fabaceae, Cannabaceae and Apiaceae. Biosystems Diversity, 27(3), 227–232.

Boyko, O. O., & Brygadyrenko, V. V. (2021a). Nematicidal activity of aqueous tinctures of plants against larvae of the nematode Strongyloides papillosus. Tropical Biomedicine, 38(2), 85–93.

Boyko, O., & Brygadyrenko, V. (2021b). Nematicidal activity of essential oils of medicinal plants. Folia Oecologica, 48(1), 42–48.

Boyko, O., & Brygadyrenko, V. (2022). Nematicidal activity of inorganic food additives. Diversity, 14, 663.

Cole, R., & Viney, M. (2018). The population genetics of parasitic nematodes of wild animals. Parasites and Vectors, 11(1), 590.

de Souza, M., Pimentel-Neto, M., de Pinho, A. L., da Silva, R. M., Farias, A. C., & Guimarães, M. P. (2013). Seasonal distribution of gastrointestinal nematode infections in sheep in a semiarid region, Northeastern Brazil. Brazilian Journal of Veterinary Parasitology, 22(3), 351–359.

Dunn, J. J., Columbus, S. T., Aldeen, W. E., Davis, M., & Carroll, K. C. (2002). Trichuris vulpis recovered from a patient with chronic diarrhea and five dogs. Journal of Clinical Microbiology, 40(7), 2703–2704.

Fernando, S. U., Udagama, P., & Fernando, S. P. (2021). Effect of urbanization on zoonotic gastrointestinal parasite prevalence in endemic toque macaque (Macaca sinica) from different climatic zones in Sri Lanka. International Journal for Parasitology: Parasites and Wildlife, 17, 100–109.

Gao, X., Wang, H., Li, J., Qin, H., & Xiao, J. (2017). Influence of land use and meteorological factors on the spatial distribution of Toxocara canis and Toxocara cati eggs in soil in urban areas. Veterinary Parasitology, 233, 80–85.

Ghiglietti, R., Rossi, P., Ramsan, M., & Colombi, A. (1995). Viability of Ascaris suum, Ascaris lumbricoides and Trichuris muris eggs to alkaline pH and different temperatures. Parassitologia, 37, 229–232.

Gortari, C., Cazau, C., & Hours, R. (2007). Nematophagous fungi of Toxocara canis eggs in a public park of La Plata, Argentina. Revista Iberoamericana de Micologia, 24(1), 24–28.

Klementowicz, J. E., Travis, M. A., & Grencis, R. K. (2012). Trichuris muris: A model of gastrointestinal parasite infection. Seminars in Immunopathology, 34(6), 815–828.

Lindgren, K., Gunnarsson, S., Höglund, J., Lindahl, C., & Roepstorff, A. (2019). Nematode parasite eggs in pasture soils and pigs on organic farms in Sweden. Organic Agriculture, 10, 289–300.

Maia Filho, de S. F., Nunes Vieira, J., Aires Berne, M. E., Stoll, F. E., Nascente, da S. P., Pötter, L., & Brayer Pereira, D. I. (2013). Fungal ovicidal activity on Toxocara canis eggs. Revista Iberoamericana de Micologia, 30(4), 226–230.

Mejer, H., & Roepstorff, A. (2006). Ascaris suum infections in pigs born and raised on contaminated paddocks. Parasitology, 133(3), 305–312.

Mekonnen, G. (2021). A review on gastrointestinal nematodes in small ruminants. Advances in Applied Science Research, 12(7), 32.

Melnychuk, V., & Yuskiv, I. (2018). Disinvasive efficacy of chlorine-based preparations of domestic production for eggs of nematodes of the species Aonchotheca bovis parasitizing in sheep. Ukrainian Journal of Veterinary and Agricultural Sciences, 1(2), 15–18.

Melnychuk, V., Yevstafieva, V., Bakhur, T., Antipov, A., & Feshchenko, D. (2020). Thͭe prevalence of gastrointestinal nematodes in sheep (Ovis aries) in the central and south-eastern regions of Ukraine. Turkish Journal of Veterinary and Animal Sciences, 44(5), 985–993.

Morrondo, P., Díez-Morrondo, C., Pedreira, J., Díez-Baños, N., Sánchez-Andrade, R., Paz-Silva, A., & Díez-Baños, P. (2006). Toxocara canis larvae viability after disinfectant-exposition. Parasitology Research, 99(5), 558–561.

Oh, K. S., Kim, G. T., Ahn, K. S., & Shin, S. S. (2016). Effects of disinfectants on larval development of Ascaris suum eggs. Korean Journal of Parasitology, 54(1), 103–107.

Paliy, A. P., Sumakova, N. V., Rodionova, K. O., Nalivayko, L. I., Boyko, V. S., Ihnatieva, T. M., Zhigalova, O. Y., Dudus, T. V., Anforova, M. V., & Kazakov, M. V. (2020). Disinvasive action of aldehyde and chlorine disinfectants on the test-culture of Toxocara canis eggs. Ukrainian Journal of Ecology, 2020, 10(4), 175–183.

Roepstorff, A., & Murrell, K. D. (1997). Transmission dynamics of helminth parasites of pigs on continuous pasture: Ascaris suum and Trichuris suis. International Journal for Parasitology, 27(5), 563–572.

Shalaby, H. A., Abdel- Shafy, S., Ashry, H. M., El- Moghazy, F. M. (2011). Efficacy of hydrogen peroxide and dihydroxy benzol mixture (disinfectant) on Toxocara canis eggs. Research Journal of Parasitology, 6, 144–150.

Shears, R. K., & Grencis, R. K. (2022). Whipworm secretions and their roles in host-parasite interactions. Parasites and Vectors, 15(1), 348.

Sinniah, B. (1982). Daily egg production of Ascaris lumbricoides: The distribution of eggs in the faeces and the variability of egg counts. Parasitology, 84(1), 167–175.

Tariq, K. A. (2015). A review of the epidemiology and control of gastrointestinal nematode infections of small ruminants. Proceedings of the National Academy of Sciences, India, Section B: Biological Sciences, 85, 693–703.

Verocai, G. G., Tavares, P. V., Ribeiro, F. de A., Correia, T. R., & Scott, F. B. (2010). Effects of disinfectants on Toxocara canis embryogenesis and larval establishment in mice tissues. Zoonoses and Public Health, 57, 213–216.

Volkov, F. A., & Simonov, A. P. (1977). Metod opredelenija ovocidnoj i larvocidnoj jeffektivnosti razlichnyh sredstv [Method for determining the ovicidal and larvocidal effectiveness of different agents]. Bulletin of the All-Union Order of the Red Banner of Labor K. I. Scriabin Institute of Helminthology, 19, 47–50 (in Russian).

Yevstafieva, V. A., Yuskiv, І. D., Melnychuk, V. V., Yasnolob, І. O., Kovalenkо, V. A., & Horb, K. O. (2018). Nematodes of the genus Тrichuris (Nematoda, Trichuridae) parasitizing sheep in central and south-eastern regions of Ukraine. Vestnik Zoologii, 52(3), 553–556.

Zhang, S., Angel, C., Gu, X., Liu, Y., Li, Y., Wang, L., Zhou, X., He, R., Peng, X., Yang, G., & Xie, Y. (2020). Efficacy of a chlorocresol-based disinfectant product on Toxocara canis eggs. Parasitology Research, 119(10), 3369–3376.

How to Cite
Yevstafieva, V., Petrenko, M., Peleno, R., Nikiforova, O., Vakulenko, V., Reshetylo, O., & Kone, M. (2023). Effect of disinfectants on viability of Trichuris skrjabini eggs . Regulatory Mechanisms in Biosystems, 14(1), 70-76. https://doi.org/10.15421/022311