Elucidation of gene action and combining ability for productive tillering in spring barley

  • V. M. Hudzenko The V. M. Remeslo Myronivka Institute of Wheat of National Academy of Agrarian Sciences of Ukraine
  • T. P. Polishchuk The V. M. Remeslo Myronivka Institute of Wheat of National Academy of Agrarian Sciences of Ukraine
  • A. A. Lysenko The V. M. Remeslo Myronivka Institute of Wheat of National Academy of Agrarian Sciences of Ukraine
  • I. V. Fedorenko The V. M. Remeslo Myronivka Institute of Wheat of National Academy of Agrarian Sciences of Ukraine
  • M. V. Fedorenko The V. M. Remeslo Myronivka Institute of Wheat of National Academy of Agrarian Sciences of Ukraine
  • L. V. Khudolii Institute of Plant Variety Examination
  • V. A. Ishchenko Institute of Agriculture of Steppe of National Academy of Agrarian Sciences of Ukraine
  • H. M. Kozelets Institute of Agriculture of Steppe of National Academy of Agrarian Sciences of Ukraine
  • A. I. Babenko National University of Life and Environmental Sciences of Ukraine
  • S. P. Tanchyk National University of Life and Environmental Sciences of Ukraine
  • S. M. Mandrovska Institute of Bioenergy Crops and Sugar Beet of National Academy of Agrarian Sciences of Ukraine
Keywords: Hordeum vulgare L.; phenotypic dominance; mode of inheritance; parameters of genetic variation; general combining ability


The purpose of the present study is to identify breeding and genetic peculiarities for productive tillering in spring barley genotypes of different origin, purposes of usage and botanical affiliation, as well as to identify effective genetic sources to further improving of the trait. There were created two complete (6 × 6) diallel crossing schemes. Into the Scheme I elite Ukrainian (MIP Tytul and Avhur) and Western European (Datcha, Quench, Gladys, and Beatrix) malting spring barley varieties were involved. Scheme II included awnless covered barley varieties Kozyr and Vitrazh bred at the Plant Production Institute named after V. Y. Yuriev of NAAS of Ukraine, naked barley varieties Condor and CDC Rattan from Canada, as well as awned feed barley variety MIP Myroslav created at MIW and malting barley variety Sebastian from Denmark. For more reliable and informative characterization of barley varieties and their progeny for productive tillering in terms of inheritance, parameters of genetic variation and general combining ability (GCA) statistical analyses of experimental data from different (2019 and 2020) growing seasons were conducted. Accordingly to the indicator of phenotypic dominance all possible modes of inheritance were detected, except for negative dominance in the Scheme I in 2020. The degree of phenotypic dominance significantly varied depending on both varieties involved in crossing schemes and conditions of the years of trials. There was overdominance in loci in both schemes in both years. The other parameters of genetic variation showed significant differences in gene action for productive tillering between crossing Schemes. In Scheme I in both years the dominance was mainly unidirectional and due to dominant effects. In the Scheme II in both years there was multidirectional dominance. In Scheme I compliance with the additive-dominant system was revealed in 2019, but in 2020 there was a strong epistasis. In Scheme II in both years non-allelic interaction was identified. In general, the mode of gene action showed a very complex gene action for productive tillering in barley and a significant role of non-genetic factors in phenotypic manifestation of the trait. Despite this, the level of heritability in the narrow sense in both Schemes pointed to the possibility of the successful selection of individuals with genetically determined increased productive tillering in the splitting generations. In Scheme I the final selection for productive tillering will be more effective in later generations, when dominant alleles become homozygous. In Scheme II it is theoretically possible to select plants with high productive tillering on both recessive and dominant basis. In both schemes the non-allelic interaction should be taken into consideration. Spring barley varieties Beatrix, Datcha, MIP Myroslav and Kozyr can be used as effective genetic sources for involvement in crossings aimed at improving the productive tillering. The results of present study contribute to further development of studies devoted to evaluation of gene action for yield-related traits in spring barley, as well as identification of new genetic sources for plant improvement.


Abdel-Ghani, A. H., Sharma, R., Wabila, C., Dhanagond, S., Owais, S. J., Duwayri, M. A., Al-Dalain, S. A., Klukas, C., Chen, D., Lübberstedt, T., von Wirén, N., Graner, A., Kilian, B., & Neumann, K. (2019). Genome-wide association mapping in a diverse spring barley collection reveals the presence of QTL hotspots and candidate genes for root and shoot architecture traits at seedling stage. BMC Plant Biology, 19, 216.

Abdel-Moneam, M. A., & Leilah, A. A. A. (2018). Combining ability for yield and its attributes in barley under stressed and non-stressed nitrogen fertilization environments. International Journal of Advanced Research in Biological Sciences, 5(3), 37–50.

Abro, T. F., Rajput, A. A., Sootaher, J. K., Shar, P. A., Chang, M. S., Naeem, M., Siyal, A. L., Siyal, F. H., Menghwar, K. K., Baloch, A., Keerio, A., & Vistro, M. A. (2021). Estimation of combining ability in F2 hybrids of bread wheat (Triticum aestivum L.) genotypes: GCA and SCA effects of F2 hybrids in bread wheat. Proceedings of the Pakistan Academy of Sciences: B. Life and Environmental Sciences, 58(2), 69–81.

Ahmad, I., Mohammad, F., Jadoon, S. A., Zeb, A., Munsif, F., & Ahmad, W. (2020). Diallel analysis for the inheritance study of phytic acid along with morpho-yield traits in bread wheat. African Journal of Biotechnology, 19(5), 259–264.

Ahmadi, J., Vaezi, B., & Pour-Aboughadareh, A. (2016). Analysis of variability, heritability, and interrelationships among grain yield and related characters in barley advanced lines. Genetika, 48(1), 73–85.

Ali, M. B., & Sayed, M. A. (2019). Stability analyses and heritability of a doubled haploid population of barley (Hordeum vulgare L.). Egyptian Journal of Agronomy, 41(1), 47–58.

Alqudah, A. M., Koppolu, R., Wolde, G. M., Graner, A., & Schnurbusch, T. (2016). The genetic architecture of barley plant stature. Frontiers in Genetics, 7, 117.

Ambikabathy, A., Banumathy, S., Gnanamalar, R. P., Arunchalam, P., Jeyaprakash, P., Amutha, R., & Venkatraman, N. S. (2021). Studies on combining ability and heterosis for yield and drought tolerance traits in rice (Oryza sativa L.). Electronic Journal of Plant Breeding, 12(4), 1292–1299.

Ansarifar, J., Akhavizadegan, F., & Wang, L. (2020). Performance prediction of crosses in plant breeding through genotype by environment interactions. Scientific Reports, 10, 11533.

Assefa, A., Girmay, G., Alemayehu, T., & Lakew, A. (2021). Performance evaluation and stability analysis of malt barley (Hordeum vulgare L.) varieties for yield and quality traits in Eastern Amhara, Ethiopia. CABI Agriculture and Bioscience, 2, 31.

Ayoob, M. H. (2020). Combining ability analysis, estimation of heterosis and some genetic parameters using half diallel cross in bread wheat (Triticum aestivum L.). Journal of Education and Science, 29(1), 96–103.

Babb, S., & Muehlbauer, G. J. (2003). Genetic and morphological characterization of the barley uniculm2 (cul2) mutant. Theoretical and Applied Genetics, 106(5), 846–857.

Bai, Y., Zhao, X., Yao, X., Yao, Y., An, L., Li, X., Wang, Y., Gao, X., Jia, Y., Guan, L., Li, M., Wu, K., & Wang, Z. (2021). Genome wide association study of plant height and tiller number in hulless barley. PLoS One, 16(12), e0260723.

Bajaniya, N. A., Pansuriya, A. G., Vekaria, D. M., Singh, C., & Savaliya, J. J. (2019). Combining ability analysis for grain yield and its components in durum wheat (Triticum durum Desf.). Indian Journal of Pure and Applied Biosciences, 7(4), 217–224.

Bauer, B., & von Wirén, N. (2020). Modulating tiller formation in cereal crops by the signalling function of fertilizer nitrogen forms. Scientific Reports, 10, 20504.

Beil, G. M., & Atkins, R. E. (1965). Inheritance of quantitative characters in grain Sorghum. Iowa State Journal of Science, 39(3), 139–158.

Bernhard, T., Wolfgang, F., Voss-Fels, K. P., Frisch, M., Snowdon, R. J., & Wittkop, B. (2017). Heterosis for biomass and grain yield facilitates breeding of productive dual-purpose winter barley hybrids. Crop Science, 57(5), 2405–2418.

Bohačenko, I., Psota, V., Hartmann, J., & Musilova, M. (2021). Combining effect of high temperature and drought on yield and malting quality of barley. Czech Journal of Food Sciences, 39(1), 17–22.

Ciulca, A. C., Madosa, E., Velicevici, G., & Ciulca, S. (2015). Combining ability for some grains morphological traits in winter barley. Journal of Horticulture, Forestry and Biotechnology, 19(3), 67–72.

Coelho, I. F., Peixoto, M. A., Marçal, T. S., Bernardeli, A., Silva Alves, R., de Lima, R. O., dos Reis, E. F., & Bhering, L. L. (2021) Accounting for spatial trends in multienvironment diallel analysis in maize breeding. PLoS One, 16(10), e0258473.

Cui, Y., Li, R., Li, G., Zhang, F., Zhu, T., Zhang, Q., Ali, J., Li, Z., & Xu, S. (2020). Hybrid breeding of rice via genomic selection. Plant Biotechnology Journal, 18(1), 57–67.

Dabbert, T., Okagaki R. J., Cho, S., Boddu, J., & Muehlbauer, G. J. (2009). The genetics of barley low-tillering mutants: Absent lower laterals (als). Theoretical and Applied Genetics, 118(7), 1351–1360.

Dabbert, T., Okagaki, R. J., Cho, S., Heinen, S., Boddu, J., & Muehlbauer, G. J. (2010). The genetics of barley low-tillering mutants: Low number of tillers-1 (lnt1). Theoretical and Applied Genetics, 121(4), 705–715.

Darabad, J. R., Rashidi, V., Shahbazi, H., Vahed, M. M., & Khalilvand, E. (2021a). Genetic analysis of agronomic traits of barley (Hordeum vulgare L.) cultivars under salinity stress using diallel cross. Plant Genetic Researches, 7(2), 83–96.

Darabad, J. R., Rashidi, V., Shahbazi, H., Vahed, M. M., & Khalilvand, E. (2021b). Heritability and genetic parameters of some antioxidant enzyme activities in barley (Hordeum vulgare L.) cultivars under salinity stress. Tarim Bilimleri Dergisi, 27(2), 187–194.

Datta, D. R., Rafii, M. Y., Misran, A., Jusoh, M., Yusuff, O., Haque, M. A., & Jatto, M. I. (2021). Half diallel analysis for biochemical and morphological traits in cultivated eggplants (Solanum melongena L.). Agronomy, 11(9), 1769.

Daudi, H., Shimelis, H., Mathew, I., Rathore, A., & Ojiewo, C. (2021). Combining ability and gene action controlling rust resistance in groundnut (Arachis hypogaea L.). Scientific Reports, 11, 16513.

de Pelegrin, A. J., Nardino, M., Carvalho, I. R., Szareski, V. J., Ferrari, M., Conte, G. G., de Oliveira, A. C., de Souza, V. Q., & da Maia, L. C. (2020). Combining ability as a criterion for wheat parents selection. Functional Plant Breeding Journal, 2(1), 4.

Del Águila, R. M., & da Silva, E. F. (2021). Efficiency of crosses selection for yield in red rice through diallel analysis. Agronomy Science and Biotechnology, 7, 1–10.

Dinsa, T., Mekbib, F., & Letta, T. (2018). Genetic variability, heritability and genetic advance of yield and yield related traits of food barley (Hordeum vulgare L.) genotypes in Mid Rift Valley of Ethiopia. Advances in Crop Science and Technology, 6(5), 1000401.

Dockter, C., Gruszka, D., Braumann, I., Druka, A., Druka, I., Franckowiak, J., Gough, S. P., Janeczko, A., Kurowska, M., Lundqvist, J., Lundqvist, U., Marzec, M., Matyszczak, I., Müller, A. H., Oklestkova, J., Schulz, B., Zakhrabekova, S., & Hansson, M. (2014). Induced variations in brassinosteroid genes define barley height and sturdiness, and expand the green revolution genetic toolkit. Plant Physiology, 166(4), 1912–1927.

Druka, A., Franckowiak, J., Lundqvist, U., Bonar, N., Alexander, J., Houston, K., Radovic, S., Shahinnia, F., Vendramin, V., Morgante, M., Stein, N., & Waugh, R. (2011). Genetic dissection of barley morphology and development. Plant Physiology, 155(2), 617–627.

Edney, M. J., MacLeod, A. L., & LaBerge, D. E. (2014). Evolution of a quality testing program for improving malting barley in Canada. Canadian Journal of Plant Science, 94(3), 535–544.

El-Rawy, M. A., Hassan, M. I., Omran, M. F., & El-defrawy, M. M. (2018). Gene action and combining ability of cellular thermotolerance in bread wheat (Triticum aestivum L.). Plant Breeding and Biotechnology, 6(3), 206–220.

Fang, Y., Zhang, X., & Xue, D. (2019). Genetic analysis and molecular breeding applications of malting quality QTLs in barley. Frontiers in Genetics, 10, 352.

Fasahat, P., Rajabi, A., Rad, J. M., & Derera, J. (2016). Principles and utilization of combining ability in plant breeding. Biometrics and Biostatistics International Journal, 4(1), 1–22.

Fonseca, J. M. O., Klein, P. E., Crossa, J., Pacheco, A., Perez-Rodriguez, P., Ramasamy, P., Klein, R., & Rooney, W. L. (2021). Assessing combining abilities, genomic data, and genotype x environment interactions to predict hybrid grain sorghum performance. The Plant Genome, 14(3), e20127.

Franckowiak, J. D., & Lundqvist, U. (2013). Descriptions of barley genetic stocks. Barley Genetics Newsletter, 43, 48–223.

Gaballah, M. M., Attia, K. A., Ghoneim, A. M., Khan, N., EL-Ezz, A.F., Yang, B., Xiao, L., Ibrahim, E. I., & Al-Doss, A. A. (2022). Assessment of genetic parameters and gene action associated with heterosis for enhancing yield characters in novel hybrid rice parental lines. Plants, 11(3), 266.

Gamayunova, V. V., Kasatkina, T. O., & Baklanova, T. V. (2021). Agroeconomic assessment of utilization biologics in the cultivation of spring barley in the conditions of the Southern Steppe of Ukraine. Agrology, 4(2), 65–70.

Giri, R. K., Verma, S. K., & Yadav, J. P. (2021). Study of heterosis, combining ability and parental diversity for seed cotton yield and contributing traits using diallel data in cotton (G. hirsutum L.). Indian Journal of Agricultural Research, 55(5), 556–562.

Govindaraju, D. R. (2019). An elucidation of over a century old enigma in genetics – heterosis. PLoS Biology, 17(4), e3000215.

Griffing, B. (1956a). Concept of general and specific combining ability in relation to diallel crossing system. Australian Journal of Biological Sciences, 9(4), 463–493.

Griffing, B. (1956b). A generalised treatment of the use of diallel crosses in quantitative inheritance. Heredity, 10(1), 31–50.

Guo, X., Sarup, P., Jensen, J. D., Orabi, J., Kristensen, N. H., Mulder, F. A. A., Jahoor, A., & Jensen, J. (2020). Genetic variance of metabolomic features and their relationship with malting quality traits in spring barley. Frontiers in Plant Science, 11, 575467.

Gupta, V. K., Agarwal, A. P., & Minz, M. G. (2017). Combining ability analysis for yield and its component traits in wheat (Titicum aestivum L.) under timely sown irrigated condition. International Journal of Bio-Resource and Stress Management, 8(6), 784–789.

Haaning, A. M., Smith, K. P., Brown-Guedira, G. L., Chao, S., Tyagi, P., & Muehlbauer, G. J. (2020). Natural genetic variation underlying tiller development in barley (Hordeum vulgare L). G3: Genes, Genomes, Genetics, 10(4), 1197–1212.

Habiyaremye, C., Schroeder, K. L., Reganold, J. P., White, D., Packer, D., & Murphy, K. M. (2021). Effect of nitrogen and seeding rate on ß-glucan, protein, and grain yield of naked food barley in no-till cropping systems in the Palouse Region of the Pacific Northwest. Frontiers in Sustainable Food Systems, 5, 663445.

Habouh, M. A. F. (2019). Inheritance of plant height, grain yield and its components in three barley crosses. Journal of Plant Production, 10(3), 293–297.

Habschied, K., Lalić, A., Krstanović, V., Dvojković, K., Abičić, I., Šimić, G., & Mastanjević, K. (2021). Comprehensive comparative study of the malting qualities of winter hull-less and hulled barley (2016–2019). Fermentation, 7(1), 8.

Hayman, B. I. (1954). The theory and analysis of diallel crosses. Genetics, 39(6), 789–809.

Hayman, B. I. (1958). The theory and analysis of diallel crosses. II. Genetics, 43(1), 63–85.

Hayman, B. I. (1960). The theory and analysis of diallel crosses. III. Genetics, 45(2), 155–172.

He, J., Shao, G., Wei, X., Huang, F., Sheng, Z., Tang, S., & Hu, P. (2017). Fine mapping and candidate gene analysis of qTAC8, a major quantitative trait locus controlling tiller angle in rice (Oryza sativa L.). PLoS One, 12(5), e0178177.

Hu, Y., Barmeier, G., & Schmidhalter, U. (2021). Genetic variation in grain yield and quality traits of spring malting barley. Agronomy, 11(6), 1177.

Hudzenko, V. M. (2017). Dialelnyi analiz produktyvnoho kushchinnia u suchasnykh sortiv yachmeniu yaroho [Diallel analysis of productive tiller number in modern spring barley varieties]. Scientific Reports of NULES of Ukraine, 5, 69 (in Ukrainian).

Hussien, A., Tavakol, E., Horner, D. S., Muñoz-Amatriaín, M., Muehlbauer, G. J., & Rossini, L. (2014). Genetics of tillering in rice and barley. The Plant Genome, 7(1), 1–20.

Ishchenko, V. A., & Kozelets, H. M. (2021). Formation of spring barley productivity depending on seed inoculation with a biopreparation and foliar fertilization in the Steppe of Ukraine. Agrology, 4(4), 180–186.

Jalata, Z., Mekbib, F., Lakew, B., & Ahmed, S. (2019). Gene action and combining ability test for some agro-morphological traits in barley. Journal of Applied Sciences, 19(2), 88–95.

Jarquin, D., de Leon, N., Romay, C., Bohn, M., Buckler, E. S., Ciampitti, I., Edwards, J., Ertl, D., Flint-Garcia, S., Gore, M. A., Graham, C., Hirsch, C. N., Holland, J. B., Hooker, D., Kaeppler, S. M., Knoll, J., Lee, E. C., Lawrence-Dill, C. J., Lynch, J. P., Moose, S. P., Murray, S. C., Nelson, R., Rocheford, T., Schnable, J. C., Schnable, P. S., Smith, M., Springer, N., Thomison, P., Tuinstra, M., Wisser, R. J., Xu, W., Yu, J., & Lorenz, A. (2021). Utility of climatic information via combining ability models to improve genomic prediction for yield within the genomes to fields maize project. Frontiers in Genetics, 11, 592769.

Jat, B. S., Bharti, B., Ranwah, B. R., & Khan, S. (2016). Combining ability studies for heat tolerance traits in bread wheat [Triticum aestivum (L.) em. Thell]. Electronic Journal of Plant Breeding, 7(4), 996–1001.

Jia, Q., Zhang, X. Q., Westcott, S., Broughton, S., Cakir, M., Yang, J., Lance, R., & Li, C. (2011). Expression level of a gibberellin 20-oxidase gene is associated with multiple agronomic and quality traits in barley. Theoretical and Applied Genetics, 122(8), 1451–1460.

Kamara, M. M., Ibrahim, K. M., Mansour, E., Kheir, A. M. S., Germoush, M. O., Abd El-Moneim, D., Motawei, M. I., Alhusays, A. Y., Farid, M. A., & Rehan, M. (2021). Combining ability and gene action controlling grain yield and its related traits in bread wheat under heat stress and normal conditions. Agronomy, 11(8), 1450.

Kassie, M. M., Awoke, Y., & Demesie, Z. (2018). Evaluation of malt barley (Hordeum distichon L.) genotypes for grain yield and malting quality parameters at Koga irrigation in Western Amhara Region. International Journal of Plant Breeding and Genetics, 12(1), 13–18.

Katiyar, A., Sharma, A., Singh, S., Srivastava, A., & Vishwakarma, S. R. (2021). Combining ability analysis for yield traits in barley (Hordeum vulgare L.). Electronic Journal of Plant Breeding, 12(2), 583–588.

Khan, A., Ur-Rahman, H., Ahmad, A., Iqbal, M., Kamal, S., Khan, S., & Bu, J. (2020). Combining ability analysis in sweet corn (Zea mays saccharrata L.) using line by tester design. Advances in Food Technology and Nutritional Sciences, 6(2), 47–52.

Kompanets, K. V., & Kozachenko, M. R. (2017). Selektsijna tsinnist ta efektyvnist vykorystannia v selektsiji bezostykh ta ostystykh sortiv yachmeniu yaroho [Breeding value and efficiency of use of awny and awnless barley cultivars in breeding]. Plant Breeding and Seed Production, 112, 56–67 (in Ukrainian).

Kong, W., Guo, H., Goff, V. H., Lee, T. H., Kim, C., & Paterson, A. H. (2014). Genetic analysis of vegetative branching in sorghum. Theoretical and Applied Genetics, 127(11), 2387–2403.

Koprna, R., Humplík, J. F., Špíšek, Z., Bryksová, M., Zatloukal, M., Mik, V., Novák, O., Nisler, J., & Doležal, K. (2021). Improvement of tillering and grain yield by application of cytokinin derivatives in wheat and barley. Agronomy, 11(1), 67.

Kumar, M., Vishwakarma, S. R., Bhushan, B., & Kumar, A. (2013). Estimation of genetic parameters and character association in barley (Hordeum vulgare L.). Journal of Wheat Research, 5(2), 76–78.

Kumari, A., Vishwakarma, S. R., & Singh, Y. (2020). Evaluation of combining ability and gene action in barley (Hordeum vulgare L.) using Line x Tester analysis. Electronic Journal of Plant Breeding, 11(1), 97–102.

Labroo, M. R., Ali, J., Aslam, M. U., de Asis, E. J., dela Paz, M. A., Sevilla, M. A., Lipka, A. E., Studer, A. J., & Rutkoski, J. E. (2021). Genomic prediction of yield traits in single-cross hybrid rice (Oryza sativa L.). Frontiers in Genetics, 12, 692870.

Laidig, F., Piepo, H.-P., Rentel, D., & Meyer, U. (2017). Breeding progress, genotypic and environmental variation and correlation of quality traits in malting barley in German official variety trials between 1983 and 2015. Theoretical and Applied Genetics, 130(11), 2411–2429.

Lal, C., Shekhawat, A. S., Rajput, S. S., Singh, J., & Sharma, S. R. (2018). Combining ability analysis for grain yield and its attributing traits in six-rowed barley (Hordeum vulgare L.). International Journal of Pure and Applied Bioscience, 6(4), 408–414.

Li, D., Zhou, Z., Lu, X., Jiang, Y., Li, G., Li, J., Wang, H., Chen, S., Li, X., Würschum, T., Reif, J. C., Xu, S., Li, M., & Liu, W. (2021). Genetic dissection of hybrid performance and heterosis for yield-related traits in maize. Frontiersin Plant Science, 12, 774478.

Li, Z., Lhundrup, N., Guo, G., Dol, K., Chen, P., Gao, L., Chemi, W., Zhang, J., Wang, J., Nyema, T., Dawa, D., & Li, H. (2020). Characterization of genetic diversity and genome-wide association mapping of three agronomic traits in qingke barley (Hordeum vulgare L.) in the Qinghai-Tibet Plateau. Frontiers in Genetics, 11, 638.

Li, Z., Philipp, N., Spiller, M., Stiewe, G., Reif, J. C., & Zhao, Y. (2016). Genome-wide prediction of the performance of three-way hybrids in barley. The Plant Genome, 10(1), 1–9.

Liller, C. B., Neuhaus, R., von Korff, M., Koornneef, M., & van Esse, W. (2015). Mutations in barley row type genes have pleiotropic effects on shoot branching. PLoS One, 10(10), e0140246.

Liu, J., Luo, W., Qin, N., Ding, P., Zhang, H., Yang, C., Mu, Y., Tang, H., Liu, Y., Li, W., Jiang, Q., Ghen, G., Wei, Y., Zheng, Y., Liu, C., Lan, X., & Ma, J. (2018). A 55 K SNP array-based genetic map and its utilization in QTL mapping for productive tiller number in common wheat. Theoretical and Applied Genetics, 131(11), 2439–2450.

Ljubičić, N., Petrović, S., Kostić, M., Dimitrijević, M., Hristov, N., Kondić-Špika, A., & Jevtić, R. (2017). Diallel analysis of some important grain yield traits in bread wheat crosses. Turkish Journal of Field Crops, 22(1), 1–7.

Madić, M. R., Djurović, D. S., Knezevi, D. S., Paunović, A. S., & Tanaskovic, S. T. (2014). Combining abilities for spike traits in a diallel cross of barley. Journal of Central Europran Agriculture, 15(1), 108–116.

Malik, P., Singh, S. K., Singh, L., Gupta, P. K., Kumar, S., Yadav, R. K., Amardeep, & Kumar, A. (2018). Studies on genetic heritability and genetic advance for seed yield and its component in barley (Hordeum vulgare L.). International Journal of Pure and Applied Bioscience, 6(6), 810–813.

Mansour, E., & Moustafa, E. S. A. (2016). Estimation of combining ability and genetic components for yield contributing traits in spring barley under normal and salinity conditions. Egyptian Journal of Agronomy, 38(3), 431–483.

Marzec, M., Gruszka, D., Tylec, P., & Szarejko, I. (2016). Identification and functional analysis of the HvD14 gene involved in strigolactone signaling in Hordeum vulgare. Physiologia Plantarum, 158(3), 341–355.

Marzougui, S., & Chargui, A. (2018). Estimation of correlation, regression and heritability among barley (Hordeum vulgare L.) accessions. Journal of New Sciences, Agriculture and Biotechnology, 60(2), 3838–3843.

Mastanjević, K., Lenart, L., Šimić, G., Lalić, A., & Krstanović, V. (2017). Malting quality indicators of Croatian dual-purpose barley varieties. Croatian Journal of Food Science and Technology, 9(2), 145–151.

Matin, M. Q. I., Amiruzzaman, M., Billah, M. M., Banu, M. B., Naher, N., & Choudhury, D. A. (2019). Genetic variability and path analysis studies in barley (Hordeum vulgare L.). International Journal of Applied Sciences and Biotechnology, 7(2), 243–247.

Matthies, I. E., Malosetti, M., Röder, M. S., & van Eeuwijk, F. (2014). Genome-wide association mapping for kernel and malting quality traits using historical European barley records. PLoS One, 9(11), e110046.

Mohamed, B. A. (2019). Combining ability of physiological and yield traits of bread wheat diallel crosses under timely and late sowing dates. Egyptian Journal of Agronomy, 41(2), 159–181.

Mudhalvan, S., Rajeswari, S., Mahalingam, L., Jeyakumar, P., Muthuswami, M., & Premalatha, N. (2021). Combining ability estimates and heterosis analysis on major yield attributing traits and lint quality in American cotton (Gossypium hirsutum L.). Electronic Journal of Plant Breeding, 12(4), 1111–1119.

Mwadzingeni, L., Shimelis, H., & Tsilo, T. J. (2018). Combining ability and gene action controlling yield and yield components in bread wheat (Triticum aestivum L.) under drought-stressed and non-stressed conditions. Plant Breeding, 137(4), 502–513.

Nadolska-Orczyk, A., Rajchel, I. K., Orczyk, W., & Gasparis, S. (2017). Major genes determining yield-related traits in wheat and barley. Theoretical and Applied Genetics, 130(6), 1081–1098.

Narwal, S., Kumar, D., Sheoran, S., Verma, R. P. S., & Gupta, R. K. (2017). Hulless barley as a promising source to improve the nutritional quality of wheat products. Journal of Food Science and Technology, 54(9), 2638–2644.

Naumov, O. G., Kozachenko, M. R., Vasko, N. I., Solonechnii, P. M., & Vazhenina, O. E. (2014). Selektsiia waxy-iachmeniu [Waxy barley breeding]. Plant Breeding and Seed Production, 105, 60–69 (in Ukrainian).

Naz, A. A., Arifuzzaman, M., Muzammil, S., Pillen, K., & Léon, J. (2014). Wild barley introgression lines revealed novel QTL alleles for root and related shoot traits in the cultivated barley (Hordeum vulgare L.). BMC Genetics, 15, 107.

Nice, L. M., Steffenson, B. J., Blake, T., Horsley, R., Smith, K., & Muehlbauer, G. J. (2017). Mapping agronomic traits in a wild barley advanced backcross-nested association mapping population. Crop Science, 57(3), 1199–1210.

Nkhata, W., Shimelis, H., Melis, R., Chirwa, R., Mzengeza, T., Mathew, I., & Shayanowako, A. (2021). Combining ability analysis of common bean (Phaseolus vulgaris L) genotypes for resistance to bean fly (Ophiomyia spp.), and grain yield and component traits. Euphytica, 217(5), 93.

Okagaki, R. J., Cho, S., Kruger, W. M., Xu, W. W., Heinen, S., & Muehlbauer, G. J. (2013). The barley UNICULM2 gene resides in a centromeric region and may be associated with signaling and stress responses. Functional and Integrative Genomics, 13(1), 33–41.

Oliveira, G. H. F., Buzinaro, R., Revolti, L. T. M., Giorgenon, C. H. B., Charnai, K., Resende, D., & Moro, G. V. (2016). An accurate prediction of maize crosses using diallel analysis and best linear unbiased predictor (BLUP). Chilean Journal of Agricultural Research, 76(3), 294–299.

Owusu, E. Y., Mohammed, H., Manigben, K. A., Adjebeng-Danquah, J., Kusi, F., Karikari, B., & Sie, E. K. (2020). Diallel analysis and heritability of grain yield, yield components, and maturity traits in cowpea (Vigna unguiculata (L.) Walp.). The Scientific World Journal, 2020, 9390287.

Panwar, D., & Sharma, H. (2019). Study of combining ability analysis in barley (Hordeum vulgare L.). International Journal of Current Microbiology and Applied Sciences, 8(12), 3004–3011.

Patial, M., Pal, D., & Kumar, J. (2016). Combining ability and gene action studies for grain yield and its component traits in barley (Hordeum vulgare L.). SABRAO Journal of Breeding and Genetics, 48(1), 90–96.

Philipp, N., Liu, G., Zhao, Y., He, S., Spiller, M., Stiewe, G., Pillen, K., Reif, J. C., & Li, Z. (2016). Genomic prediction of barley hybrid performance. The Plant Genome, 9(2), 16.

Ramsay, L., Comadran, J., Druka, A., Marshall, D. F., Thomas, W. T. B., MacAulay, M., MacKenzie, K., Simpson, C., Fuller, J., Bonar, N., Hayes, P. M., Lundqvist, U., Franckowiak, J. D., Close, T. J., Muehlbauer, G. J., & Waugh, R. (2011). INTERMEDIUM-C, a modifier of lateral spikelet fertility in barley, is an ortholog of the maize domestication gene TEOSINTE BRANCHED 1. Nature Genetics, 43(2), 169–172.

Rani, M., Singh, G., Siddiqi, R. A., Gill, B. S., Sogi, D. S., & Bhat, M. A. (2021). Comparative quality evaluation of physicochemical, technological, and protein profiling of wheat, rye, and barley cereals. Frontiers in Nutrition, 8, 694679.

Riaz, A., Kanwal, F., Börner, A., Pillen, K., Dai, F., & Alqudah, A. M. (2021). Advances in genomics-based breeding of barley: Molecular tools and genomic databases. Agronomy, 11(5), 894.

Rincent, R., Charpentier, J. P., Faivre-Rampant, P., Paux, E., Le Gouis, J., Bastien, C., & Segura, V. (2018). Phenomic selection is a low-cost and high-throughput method based on indirect predictions: Proof of concept on wheat and poplar. G3: Genes, Genomes, Genetics, 8(12), 3961–3972.

Rodrigues, O., Minella, E., & Costenaro, E. R. (2020). Genetic improvement of barley (Hordeum vulgare L.) in Brazil: Yield increase and associated traits. Agricultural Sciences, 11(4), 425–438.

Russu, F., Porumb, I., Mureșanu, F., & Tritean, N. (2019). Estimation of the variability and inheritance of some quantitative traits in two rows spring barley in the conditions of Ards Turda. Romanian Agricultural Research, 36, 67–77.

Sabitha, N., Reddy, D. M., Reddy, D. L., Kumar, M. H., Sudhakar, P., & Reddy, B. R. (2021). Nature of gene action for kernel yield and its component traits in maize (Zea mays L.). Electronic Journal of Plant Breeding, 12(4), 1359–1366.

Saeed, M., & Khalil, I. H. (2017). Combining ability and narrow-sense heritability in wheat (Triticum aestivum L.) under rainfed environment. Sarhad Journal of Agriculture, 33(1), 22–29.

Sayd, R. M., Amabile, R. F., Faleiro, F. G., Costa, M. C., & Montalvão, A. P. L. (2019). Genetic parameters and agronomic characterization of elite barley accessions under irrigation in the Cerrado. Acta Scientiarum. Agronomy, 41, e42630.

Schlegel, R. H. G. (2003). Encyclopedic dictionary of plant breeding and related subjects. Food Products Press and The Haworth Reference Press, New York, London, Oxford.

Semahegn, Y., Shimelis, H., Laing, M., & Mathew, I. (2021). Combining ability of bread wheat genotypes for yield and yield-related traits under drought-stressed and non-stressed conditions. South African Journal of Plant and Soil, 38(2), 171–179.

Shaaf, S., Bretani, G., Biswas, A., Fontana, I. M., & Rossini, L. (2019). Genetics of barley tiller and leaf development. Journal of Integrative Plant Biology, 61(3), 226–256.

Sharma, V., Dodiya, N. S., Dubey, R. B., Khandagale, S. G., & Khan, R. (2019). Combining ability analysis over environments in bread wheat. Electronic Journal of Plant Breeding, 10(4), 1397–1404.

Shaveta, S., Kaur, H., & Kaur, S. (2019). Hulless barley: A new era of research for food purposes. Journal of Cereal Research, 11(2), 114–124.

Sterna, V., Bleidere, M., Sabovics, M., Auzins, A., Leimane, I., & Krievina, A. (2021). Improving nutritional value of products with flour of the hulless barley cultivar ‘Kornelija’ as an ingredient. Zemdirbyste - Agriculture, 108(1), 43–50.

Sultan, M. S., Abdel-Moneam, M. A., & Haffez, S. H. (2016). Estimation of combining ability for yield and its components in barley under normal and stress drought condition. Journal of Plant Production, 7(6), 553–558.

Tavakol, E., Okagaki, R., Verderio, G., Shariati, J. V., Hussien, A., Bilgic, H., Scanlon, M. J., Todt, N. R., Close, T. J., Druka, A., Waugh, R., Steuernagel, B., Ariyadasa, R., Himmelbach, A., Stein, N., Muehlbauer, G. J., & Rossini, L. (2015). The barley Uniculme4 gene encodes a blade-on-petiole-like protein that controls tillering and leaf patterning. Plant Physiology, 168(1), 164–174.

Thorwarth, P., Ahlemeyer, J., Bochard, A. M., Krumnacker, K., Blümel, H., Laubach, E., Knöchel, N., Cselényi, L., Ordon, F., & Schmid, K. J. (2017). Genomic prediction ability for yield-related traits in German winter barley elite material. Theoretical and Applied Genetics, 130(8), 1669–1683.

Tokhetova, L. A., Umirzakov, S. I., Nurymova, R. D., Baizhanova, B. K., & Akhmedova, G. B. (2020). Analysis of economic-biological traits of hull-less barley and creation of source material for resistance to environmental stress factors. International Journal of Agronomy, 2020, 8847753.

Vashchenko, V. V., & Shevchenko, A. A. (2021). Variability and genetic control of the “seedlings-earing” interphase period in spring barley under water deficit. Plant Breeding and Seed Production, 119, 94–105.

Vettorazzi, J. C. F., Santa-Catarina, R., Poltronieri, T. P. de S., Cortes, D. F. M., Azevedo, A. O. N., Miranda, D. P., Santana, J. G. S., Ramos, H. C. C., & Pereira, M. G. (2021). Combining ability of recombined F4 papaya lines: A strategy to select hybrid combination. Scientia Agricola, 78(2), e20190191.

Wang, H., Chen, W., Eggert, K., Charnikhova, T., Bouwmeester, H., Schweizer, P., Hajirezaei, M. R., Seiler, C., Sreenivasulu, N., von Wirén, N., & Kuhlmann, M. (2018). Abscisic acid influences tillering by modulation of strigolactones in barley. Journal of Experimental Botany, 69(16), 3883–3898,

Wang, X., Zhang, Z., Xu, Y., Li, P., Zhang, X., & Xu, C. (2020). Using genomic data to improve the estimation of general combining ability based on sparse partial diallel cross designs in maize. The Crop Journal, 8(5), 819–829.

Wang, Z., Liu, Y., Shi, H., Mo, H., Wu, F., Lin, Y., Gao, S., Wang, J., Wei, Y., Liu, C., & Zheng, Y. (2016). Identification and validation of novel low-tiller number QTL in common wheat. Theoretical and Applied Genetics, 129(3), 603–612.

Widener, S., Graef, G., Lipka, A. E., & Jarquin, D. (2021). An assessment of the factors influencing the prediction accuracy of genomic prediction models across multiple environments. Frontiers in Genetics, 12, 689319.

Xu, X., Sharma, R., Tondelli, A., Russell, J., Comadran, J., Schnaithmann, F., Pillen, K., Kilian, B., Cattivelli, L., Thomas, W. T. B., & Flavell, A. J. (2018). Genome-wide association analysis of grain yield-associated traits in a Pan-European barley cultivar collection. The Plant Genome, 11(1), 170073.

Xu, Y., Jia, Q., Zhou, G., Zhang, X. Q., Angessa, T., Broughton, S., Yan, G., Zhang, W., & Li, C. (2017). Characterization of the sdw1 semi-dwarf gene in barley. BMC Plant Biology, 17, 11.

Yadav, R. K., Gautam, S., Palikhey, E., Joshi, B. K., Ghimire, K. H., Gurung, R., Adhikari, A. R., Pudasaini, N., & Dhakal, R. (2018). Agro-morphological diversity of Nepalese naked barley landraces. Agriculture and Food Security, 7, 86.

Yadav, S. K., Singh, A. K., Pandey, P., & Singh, S. (2015). Genetic variability and direct selection criterion for seed yield in segregating generations of barley (Hordeum vulgare L.). American Journal of Plant Sciences, 6(9), 1543–1549.

Yang, W., Qin, Z., Sun, H., Hou, Q., Gao, J., Chen, X., Zhang, L., Wang, Y., Zhao, C., & Zhang, F. (2022). Analysis of combining ability for stem-related traits and its correlations with lodging resistance heterosis in hybrid wheat. Journal of Integrative Agriculture, 21(1), 26–35.

Yang, Y., Ferreira, G., Teets, C. L., Corl, B. A., Thomason, W. E., & Griffey C. A. (2018). Effects of feeding hulled and hull-less barley with low- and high-forage diets on lactation performance, nutrient digestibility, and milk fatty acid composition of lactating dairy cows. Journal of Dairy Science, 101(4), 3036–3043.

Yao, X., Wu, K., Yao, Y., Bai, Y., Ye, J., & Chi, D. (2018). Construction of a high-density genetic map: genotyping by sequencing (GBS) to map purple seed coat color (Psc) in hulless barley. Hereditas, 155, 37.

Ye, L., Wang, Y., Long, L., Luo, H., Shen, Q., Broughton, S., Wu, D., Shu, X., Dai, F., Li, C., & Zhang, G. (2019). A trypsin family protein gene controls tillering and leaf shape in barley. Plant Physiology, 181(2), 701–713.

Yu, K., Wang, H., Liu, X., Xu, C., Li, Z., Xu, X., Liu, J., Wang, Z., & Xu, Y. (2020). Large-scale analysis of combining ability and heterosis for development of hybrid maize breeding strategies using diverse germplasm resources. Frontiers in Plant Science, 11, 660.

Yuan, X., Yu, C., Shimojo, M., & Shao, T. (2012). Improvement of fermentation and nutritive quality of straw-grass silage by inclusion of wet hulless-barley distillers’ grains in Tibet. Asian-Australasian Journal of Animal Sciences, 25(4), 479–485.

Zhang, X., Lv, L., Lv, C., Guo, B., & Xu, R. (2015). Combining ability of different agronomic traits and yield components in hybrid barley. PloS One, 10(6), 1–9.

Zhu, X., Leiser, W. L., Hahn, V., & Würschum, T. (2021). Phenomic selection is competitive with genomic selection for breeding of complex traits. The Plant Phenome Journal, 4(1), e20027.

Zymogliad, O. V., Kozachenko, M. R., Vasko, N. I., Solonechnyi, P. M., Vazhenina, O. E., & Naumov, O. G. (2021). Performance inheritance and combining ability of spring barley accessions. Plant Breeding and Seed Production, 119, 106–116.

How to Cite
Hudzenko, V. M., Polishchuk, T. P., Lysenko, A. A., Fedorenko, I. V., Fedorenko, M. V., Khudolii, L. V., Ishchenko, V. A., Kozelets, H. M., Babenko, A. I., Tanchyk, S. P., & Mandrovska, S. M. (2022). Elucidation of gene action and combining ability for productive tillering in spring barley . Regulatory Mechanisms in Biosystems, 13(2), 197-206. https://doi.org/10.15421/022225