Influence of nanosilver in hybrid carriers on morphological and biochemical blood pa-rameters of laying hens

  • L. V. Shevchenko National University of Life and Environmental Sciences of Ukraine
  • Y. Y. Dovbnia National University of Life and Environmental Sciences of Ukraine
  • N. М. Permyakova Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine
  • Т. B. Zheltonozhskaya Institute of Macromolecular Chemistry, National Academy of Sciences of Ukraine
  • S. V. Shulyak State Scientific Research Institute of Laboratory Diagnostics and Veterinary and Sanitary Expertise
  • D. O. Klymchuk M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine
Keywords: nanoparticles; polymer / inorganic carrier; red blood cells; white blood cells; the body of a bird.

Abstract

The search for an alternative to antibiotics in poultry has led to a study of the effectiveness of using nanosilver preparations in the production of table eggs. The experiment determined the effect of the drug nanosilver in carriers based on polymer/inorganic hybrids (AgNPs/SPH) on morphological and biochemical parameters of the blood of laying hens. For this, 45 Hy-Line W36 hens were used at the age of 38 weeks, which were randomly divided into three groups. The AgNPs/SPH solution was administered 3 times a month with an interval of 10 days at concentrations of 0.0, 1.0, and 2.0 mg/L (0.0, 0.2 and 0.4 mg per hen per day). The introduction of AgNPs/SPH in doses of 0.2 and 0.4 mg per hen per day three times a month did not have a significant effect on the morphological parameters of the blood. A single dose of 0.2 mg AgNPs/SPH solution per hen per day increased the level of total protein, glucose, cholesterol, as well as the activity of alanine aminotransferase and alkaline phosphatase in the blood serum and decreased albumin, creatinine and gamma-glutamyl transpeptidase activity. Feeding laying hens a solution of nanosilver in a larger dose had a less pronounced effect on these indicators. Two-fold administration of AgNPs/SPH solution at a dose of 0.2 mg per laying hen per day increased only gamma-glutamyl transpeptidase activity in the blood serum, but decreased the level of total activity of protein, albumin, phosphorus, and alkaline phosphatase. At the same time, the drug nanosilver in double dose per day caused an increase in albumin content and alkaline phosphatase activity in the serum of hens. Triple feeding of laying hens with a solution of nanosilver at a dose of 0.2 mg per hen per day did not affect most of the biochemical parameters of serum, but in the double dose increased the content of total protein against the background of lowered cholesterol and gamma-glutamyl transpeptidase activity. With the increase in the frequency of feeding laying hens solutions of nanosilver in carriers based on polymer / inorganic hybrids, the level of severity of their impact on the metabolic profile of serum decreased. The results of research can be the basis for determining the optimal interval of application of nanosilver drugs in poultry, depending on the method of their synthesis and stabilization.

References

Abdelsalam, M., Al-Homidan, I., Ebeid, T., Abou-Emera, O., Mostafa, M., Abd El-Razik, M., Shehab-El-Deen, M., Abdel Ghani, S., & Fathi, M. (2019). Effect of silver nanoparticle administration on productive performance, blood parameters, antioxidative status, and silver residues in growing rabbits under hot climate. Animals, 9(10), 845.

Adeyemi, O. S., & Adewumi, I. (2014). Biochemical evaluation of silver nanoparticles in Wistar rats. International Scholarly Research Notices, 2014, 196091.

Ahmadi, F. (2012). Impact of different levels of silver nanoparticles (Ag-nps) on performance, oxidative enzymes and blood parameters in broiler chicks. Pakistan Veterinary Journal, 32(3), 325–328.

Ahmadi, J. (2009). Application of different levels of silver nanoparticles in food on the performance and some blood parameters of broiler chickens. World Applied Sciences Journal, 1(7), 24–27.

Anwar, M., Awais, M., Akhtar, M., Navid, M., & Muhammad, F. (2019). Nutritional and immunological effects of nano-particles in commercial poultry birds. World’s Poultry Science Journal, 75(2), 261–272.

Bélteky, P., Rónavári, A., Igaz, N., Szerencsés, B., Tóth, I. Y., Pfeiffer, I., Kiricsi, M., & Kónya, Z. (2019). Silver nanoparticles: Aggregation behavior in biorelevant conditions and its impact on biological activity. International Journal of Nanomedicine, 14, 667–687.

Cameron, S. J., Hosseinian, F., & Willmore, W. G. (2018). A current overview of the biological and cellular effects of nanosilver. International Journal of Molecular Sciences, 19(7), 2030.

Chen, L. Q., Fang, L., Ling, J., Ding, C. Z., Kang, B., & Huang, C. Z. (2015). Nanotoxicity of silver nanoparticles to red blood cells: Size dependent adsorption, uptake, and hemolytic activity. Chemical Research in Toxicology, 28(3), 501–509.

Chen, R., Choudhary, P., Schurr, R. N., Bhattacharya, P., Brown, J. M., & Chun Ke, P. (2012). Interaction of lipid vesicle with silver nanoparticle-serum albumin protein corona. Applied Physics Letters, 100(1), 137030–137034.

Chen, Z. Y., Li, N. J., Cheng, F. Y., Hsueh, J. F., Huang, C. C., Lu, F. I., Fu, T. F., Yan, S. J., Lee, Y. H., & Wang, Y. J. (2020). The effect of the chorion on size-dependent acute toxicity and underlying mechanisms of amine-modified silver nanoparticles in zebrafish embryos. International Journal of Molecular Sciences, 21(8), 2864.

de la Harpe, K. M., Kondiah, P., Choonara, Y. E., Marimuthu, T., du Toit, L. C., & Pillay, V. (2019). The hemocompatibility of nanoparticles: a review of cell-nanoparticle interactions and hemostasis. Cells, 8(10), 1209.

Deshmukh, S. P., Patil, S. M., Mullani, S. B., & Delekar, S. D. (2019). Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering, C, Materials for Biological Applications, 97, 954–965.

Dosoky, W. M., Fouda, M. M. G., Alwan, A. B., Abdelsalam, N. R., Taha, A. E., Ghareeb, R. Y., El-Aassar, M. R., & Khafaga, A. F. (2021). Dietary supplementation of silver-silica nanoparticles promotes histological, immunological, ultrastructural, and performance parameters of broiler chickens. Scientific Reports, 11, 4166.

Elalfy, M. E., Abouelmagd, M., Abdelraheem, E. A., & El-Hadidy, M. G. (2020). Hepatorenal effects of silver nanoparticles in in-vivo postnatal model of toxicity and in HepG2 cell line. Material Science Research India, 17(1), 54–61.

Elkloub, K., Moustafa, M. E., Ghazalah, A. A., & Rehan, A. A. A. (2015). Effect of dietary nanosilver on broiler performance. International Journal of Poultry Science, 14(3), 177–182.

Gessmann, J., Seybold, D., Ayami, F., Peter, E., Baecker, H., Schildhauer, T. A., & Köller, M., (2018). Peripheral blood plasma clot as a local antimicrobial drug delivery matrix. Tissue Engineering Part A, 24, 809–818.

Gholami-Ahangaran, M., & Zia-Jahromi, N. (2014). Effect of nanosilver on blood parameters in chickens having aflatoxicosis. Toxicology and Industrial Health, 30(2), 192–196.

Gnanadhas, D. P., Ben Thomas, M., Thomas, R., Raichur, A. M., & Chakravortty, D. (2013). Interaction of silver nanoparticles with serum proteins affects their antimicrobial activity in vivo. Antimicrobial Agents and Chemotherapy, 57(10), 4945–4955.

Gomathi, A. C., Xavier Rajarathinam, S. R., Mohammed Sadiq, A., & Rajeshkumar, S. (2020). Anticancer activity of silver nanoparticles synthesized using aqueous fruit shell extract of Tamarindus indica on MCF-7 human breast cancer cell line. Journal of Drug Delivery Science and Technology, 55, 101376.

Hassanen, E. I., Khalaf, A. A., Tohamy, A. F., Mohammed, E. R., & Farroh, K. Y. (2019). Toxicopathological and immunological studies on different concentrations of chitosan-coated silver nanoparticles in rats. International Journal of Nanomedicine, 14, 4723–4739.

Heydrnejad, M. S., Samani, R. J., & Aghaeivanda, S. (2015). Toxic effects of silver nanoparticles on liver and some hematological parameters in male and female mice (Mus musculus). Biological Trace Element Research, 165, 153–158.

Jafarzadeh, R., Heydarnejad, M. S., & Aghayeevanda, S. (2015). The effects of silver nanoparticles on creatinine, BUN and blood electrolytes in laboratory male mice (Mus musculus). Journal of Shahrekord University of Medical Sciences, 17(5), 64–73.

Katarzyńska-Banasik, D., Grzesiak, M., Kowalik, K., & Sechman, A. (2021). Administration of silver nanoparticles affects ovarian steroidogenesis and may influence thyroid hormone metabolism in hens (Gallus domesticus). Ecotoxicology and Environmental Safety, 208, 111427.

Kennedy, D. C., Orts-Gil, G., Lai, C.-H., Miller, S., Haase, A., Luch, A., & Seeberger, P. H. (2014). Carbohydrate functionalization of silver nanoparticles modulates cytotoxicity and sellular uptake. Journal of Nanobiotechnology, 12, 59.

Kiseleva, I. V., Farroukh, M. A., Skomorokhova, E. A., Rekstin, A. R., Bazhenova, E. A., Magazenkova, D. N., Orlov, I. A., Rudenko, L. G., Broggini, M., & Puchkova, L. V. (2020). Anti-influenza effect of nanosilver in a mouse model. Vaccines, 8(4), 679.

Kulak, E., Ognik, K., Stępniowska, A., & Sembratowicz, I. (2018a). The effect of administration of silver nanoparticles on silver accumulation in tissues and the immune and antioxidant status of chickens. Journal of Animal and Feed Sciences, 27(1), 44–54.

Kulak, E., Sembratowicz, I., Stępniowska, A., & Ognik, K. (2018b). The effect of administration of silver nanoparticles on the immune status of chickens. Annals of Animal Science, 18(2), 401–416.

Laridan, E., Martinod, K., & De Meyer, S. F. (2019). Neutrophil extracellular traps in arterial and venous thrombosis. Seminars in Thrombosis and Hemostasis, 45(1), 86–93.

Lee, M. J., Lee, S. J., Yun, S. J., Jang, J. Y., Kang, H., Kim, K., Choi, I. H., & Park, S. (2015). Silver nanoparticles affect glucose metabolism in hepatoma cells through production of reactive oxygen species. International Journal of Nanomedicine, 11, 55–68.

Li, Y., Bhalli, J. A., Ding, W., Yan, J., Pearce, M. G., Sadiq, R., Cunningham, C. K., Jones, M. Y., Monroe, W. A., Howard, P. C., Zhou, T., & Chen, T. (2014). Cytotoxicity and genotoxicity assessment of silver nanoparticles in mouse. Nanotoxicology, 8(1), 36–45.

Lin, M.-H., Lin, C.-F., Yang, S.-C., Hung, C.-F., & Fang, J.-Y. (2018). The interplay between nanoparticles and neutrophils. Journal of Biomedical Nanotechnology, 14(1), 66–85.

Lopez, J. P., Sancho, M. J., Marino, A., & Macarulla, J. M. (1984). Cholesterol biosynthesis in chicken liver: Effect of triiodothyronine. Experimental and Clinical Endocrinology, 84(1), 45–51.

Nikalje, A. P. (2015). Nanotechnology and its applications in medicine. Medicinal Chemistry, 5(2), 81–89.

Ognik, K., Cholewińska, E., Czech, A., Kozłowski, K., Wlazło, Ł., Nowakowicz-Dębek, B., Szlązak, R., & Tutaj, K. (2016). Effect of silver nanoparticles on the immune, redox, and lipid status of chicken blood. Czech Journal of Animal Science, 61, 450–461.

Ognik, K., Stępniowska, A., & Kozłowski, K. (2017). The effect of administration of silver nanoparticles to broiler chickens on estimated intestinal absorption of iron, calcium, and potassium. Livestock Science, 200, 40–45.

Pangestika, R., & Ernawati, R. (2017). Antiviral activity effect of silver nanoparticles (Agnps) solution against the growth of Infectious Bursal Disease virus on embryonated chicken eggs with Elisa Test. KnE Life Sciences, 3(6), 536–548.

Parang, Z., & Moghadamnia, D. (2018). Effects of silver nanoparticles on the functional tests of liver and its histological changes in adult male rats. Nanomedicine Research Journal, 3(3), 146–153.

Ranoszek-Soliwoda, K., Tomaszewska, E., Małek, K., Celichowski, G., Orlowski, P., Krzyzowska, M., & Grobelny, J. (2019). The synthesis of monodisperse silver nanoparticles with plant extracts. Colloids and Surfaces, B: Biointerfaces, 177(1), 19–24.

Saleh, A. A., & El-Magd, M. A. (2018). Beneficial effects of dietary silver nanoparticles and silver nitrate on broiler nutrition. Environmental Science and Pollution Research, 25(27), 27031–27038.

Samari, F., Salehipoor, H., Eftekhar, E., & Yousefinejad, S. (2018). Low-temperature biosynthesis of silver nanoparticles using mango leaf extract: Catalytic effect, antioxidant properties, anticancer activity and application for colorimetric sensing. New Journal of Chemistry, 42, 15905–15916.

Sarhan, O. M., & Hussein, R. M. (2014). Effects of intraperitoneally injected silver nanoparticles on histological structures and blood parameters in the albino rat. International Journal of Nanomedicine, 9(1), 1505–1517.

Sulaiman, F. A., Adeyemi, O. S., Akanji, M. A., Oloyede, H. O. B., Sulaiman, A. A., Olatunde, A., Hoseni, A. A., Olowolafe, Y. V., Nlebedim, R. N., Muritala, H., Nafiu, M. O., & Salawu, M. O. (2015). Biochemical and morphological alterations caused by silver nanoparticles in Wistar rats. Journal of Acute Medicine, 5(4), 96–102.

Svihus, B. (2014). Function of the digestive system. Journal of Applied Poultry Research, 23(2), 306–314.

Vadalasetty, K. P., Lauridsen, C., Engberg, R. M., Vadalasetty, R., Kutwin, M., Chwalibog, A., & Sawosz, E. (2018). Influence of silver nanoparticles on growth and health of broiler chickens after infection with Campylobacter jejuni. BMC Veterinary Research, 14, 1. http://doi.org/10.1186/s12917-017-1323-x

Wang, Z., Xia, T., & Liu, S. (2015). Mechanisms of nanosilver-induced toxicological effects: More attention should be paid to its sublethal effects. Nanoscale, 7, 7470–7481.

Xu, L., Wang, Y. Y., Huang, J., Chen, C. Y., Wang, Z. X., & Xie, H. (2020). Silver nanoparticles: Synthesis, medical applications and biosafety. Theranostics, 10(20), 8996–9031.

Zheltonozhskaya, T. B., Permyakova, N. M., Kravchenko, O. O., Maksin, V. I., Nessin, S. D., Klepko, V. V., & Klymchuk, D. O. (2021). Polymer/inorganic hybrids containing silver nanoparticles and their activity in the disinfection of fish aquariums/ponds. Polymer-Plastics Technology and Materials, 60(4), 369–391.

Zheltonozhskaya, Т. B., Permyakova, N. M., Kondratiuk, T. O., Beregova, T. V., Klepko, V. V., & Melnik, B. S. (2019). Hybrid-stabilized silver nanoparticles and their biological impact on hospital infections, healing wounds, and wheat cultivation. French-Ukrainian Journal of Chemistry, 7(2), 20–39.

Published
2022-01-14
How to Cite
Shevchenko, L. V., Dovbnia, Y. Y., PermyakovaN. М., ZheltonozhskayaТ. B., Shulyak, S. V., & Klymchuk, D. O. (2022). Influence of nanosilver in hybrid carriers on morphological and biochemical blood pa-rameters of laying hens . Regulatory Mechanisms in Biosystems, 13(1), 15-22. https://doi.org/10.15421/022203