The effect of nanosilver in carriers based on polymer/inorganic hybrids on the quality and safety of edible chicken eggs

  • L. V. Shevchenko National University of Life and Environmental Sciences of Ukraine
  • Y. Y. Dovbnia National University of Life and Environmental Sciences of Ukraine
  • T. B. Zheltonozhskaya Institute of Macromolecular Chemistry, NAS of Ukraine
  • N. M. Permyakova Institute of Macromolecular Chemistry, NAS of Ukraine
  • L. M. Vygovska National University of Life and Environmental Sciences of Ukraine
  • V. O. Ushkalov National University of Life and Environmental Sciences of Ukraine
Keywords: chemical composition of eggs; MAFAnM; lactobacilli; bifidobacteria; AgNPs/SPH.

Abstract

One of the modern antibacterial agents that are an alternative to antibiotics are nanoparticles of noble metals, including silver. To reduce their toxicity, cumulative effect and prolong the effect in animals, there is ongoing work on development and improvement of the methods for their synthesis using various carriers, including those based on polymer/inorganic hybrids. In this study, the quality and safety of edible eggs were determined on Hy-Line laying hens using W36 solutions of nanosilver in carriers based on polymer/inorganic hybrids (AgNPs/SPH) in the concentration of 0.0, 1.0 and 2.0 mg/L of water (0.0, 0.2 and 0.4 mg per hen per day) three times with 10 day interval. We determined that one-, two- and three-time feeding of nanosilver in doses of 0.0, 0.2 and 0.4 mg per hen per day did not affect water consumption, feed, egg productivity, as well as dry matter content, crude protein, fat, ash, and calcium and phosphorus in eggs for 30 days. Contamination of the surface of the shell and yolks of eggs with mesophilic aerobic and facultative anaerobic microorganisms (MAFAnM) did not depend on the dose and duration of consumption of the nanosilver drug by laying hens. The nanosilver drug in doses of 0.0, 0.2 and 0.4 mg per hen per day did not affect the contamination of the egg shell surface with microorganisms of genera Citrobacter, Klebsiella, as well as Escherichia coli, Proteus mirabilis, Salmonella spp., Staphylococcus aureus and S. epidermidis. When administered orally, nanosilver in the dose of 0.2 mg per hen per day did not change the number of symbiotic microorganisms of genera Bifidobacterium and Lactobacillus, while and the dose of 0.4 mg per hen daily slightly reduced the number of microorganisms of genus Lactobacillus in the hens’ manure. The obtained data can be used for further research to determine the effective dose and interval of application of nanosilver preparations to poultry for preventive and therapeutic measures, taking into account the preservation of the microbiome of the digestive system of hens.

References

Anwar, M., Awais, M., Akhtar, M., Navid, M., & Muhammad, F. (2019). Nutritional and immunological effects of nano-particles in commercial poultry birds. World’s Poultry Science Journal, 75(2), 261–272.

Bayer, E. V., Novozhitskaya, Y. N., Shevchenko, L. V., & Mykhalska, V. M. (2017). Monitoring of residues of veterinary preparations in food products. Ukrainian Journal of Ecology, 7(3), 251–257.

Chen, H., Zhao, R., Wang, B., Cai, C., Zheng, L., Wang, H., Wang, M., Ouyang, H., Zhou, X., Chai, Z., Zhao, Y., & Feng, W. (2017). The effects of orally administered Ag, TiO2 and SiO2 nanoparticles on gut microbiota composition and colitis induction in mice. NanoImpact, 8, 80–88.

Chen, X., Li, X., He, Z., Hou, Z., Xu, G., Yang, N., & Zheng, J. (2019). Comparative study of eggshell antibacterial effectivity in precocial and altricial birds using Escherichia coli. PLoS One, 14(7), e0220054.

Długosz, O., Sochocka, M., Ochnik, M., & Banach, M. (2021). Metal and bimetallic nanoparticles: Flow synthesis, bioactivity and toxicity. Journal of Colloid and Interface Science, 586, 807–818.

Elshaghabee, F., Rokana, N., Gulhane, R. D., Sharma, C., & Panwar, H. (2017). Bacillus as potential probiotics: Status, concerns, and future perspectives. Frontiers in Microbiology, 8, 1490.

Farzinpour, A., & Karashi, N. (2013). The effects of nanosilver on egg quality traits in laying Japanese quail. Applied Nanoscience, 3, 95–99.

Gopinath, P., Ranjani, A., Dhanasekaran, D., Thajuddin, N., Archunan, G., Akbarsha, M. A., Gulyás, B., & Padmanabhan, P. (2016). Multi-functional nano silver: A novel disruptive and theranostic agent for pathogenic organisms in real-time. Scientific Reports, 6, 34058.

Hamed, S., Emara, M., Shawky, R. M., El-Domany, R. A., & Youssef, T. (2017). Silver nanoparticles: Antimicrobial activity, cytotoxicity, and synergism with N-acetyl cysteine. Journal of Basic Microbiology, 57(8), 659–668.

Javurek, A. B., Suresh, D., Spollen, W. G., Hart, M. L., Hansen, S. A., Ellersieck, M. R., Bivens, N. J., Givan, S. A., Upendran, A., Kannan, R., & Rosenfeld, C. S. (2017). Gut dysbiosis and neurobehavioral alterations in rats exposed to silver nanoparticles. Scientific Reports, 7(1), 2822.

Jung, W. K., Koo, H. C., Kim, K. W., Shin, S., Kim, S. H., & Park, Y. H. (2008). Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Applied and Environmental Microbiology, 74, 2171–2178.

Kulak, E., Ognik, K., Stępniowska, A., & Sembratowicz, I. (2018). The effect of administration of silver nanoparticles on silver accumulation in tissues and the immune and antioxidant status of chickens. Journal of Animal and Feed Sciences, 27(1), 44–54.

Lamas, B., Breyner, N. M., & Houdeau, E. (2020). Impacts of foodborne inorganic nanoparticles on the gut microbiota-immune axis: Potential consequences for host health. Particle and Fibre Toxicology, 17(1), 19.

Lee, S. H., & Jun, B.-H. (2019). Silver nanoparticles: Synthesis and application for nanomedicine. International Journal of Molecular Sciences, 20, 865.

Maki, J. J., Bobeck, E. A., Sylte, M. J., & Looft, T. (2020). Eggshell and environmental bacteria contribute to the intestinal microbiota of growing chickens. Journal of Animal Science and Biotechnology, 11, 60.

Motelica, L., Ficai, D., Ficai, A., Truşcă, R. D., Ilie, C. I., Oprea, O. C., & Andronescu, E. (2020). Innovative antimicrobial chitosan/ZnO/Ag NPs/citronella essential oil nanocomposite-potential coating for grapes. Foods, 9(12), 1801.

Natsuki, J., Natsuki, T., & Hashimoto, Y. A. (2015). Review of silver nanoparticles: Synthesis methods, properties and applications. International Journal of Materials Science and Applications, 4, 325–332.

Ohshima, Y., Takada, D., Namai, S., Sawai, J., Kikuchi, M., & Hotta, M. (2015). Antimicrobial characteristics of heated eggshell powder. Biocontrol Science, 20(4), 239–246.

Pulit-Prociak, J., Staroń, A., Staroń, P., Chmielowiec-Korzeniowska, A., Drabik, A., Tymczyna, L., & Banach, M. (2020). Preparation and of PVA-based compositions with embedded silver, copper and zinc oxide nanoparticles and assessment of their antibacterial properties. Journal of Nanobiotechnology, 18(1), 148.

Rozenberg, B. A., & Tenne, R. (2008). Polymer-assisted fabrication of nanoparticles and nanocomposites. Progress in Polymer Science, 33, 40–112.

Salem, S. S., El-Belely, E. F., Niedbała, G., Alnoman, M. M., Hassan, S. E., Eid, A. M., Shaheen, T. I., Elkelish, A., & Fouda, A. (2020). Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic Actinomycetes and their use as coating for the textile fabrics. Nanomaterials, 10(10), 2082.

Stepień-Pyśniak, D. (2010). Occurrence of gram-negative bacteria in hens’ eggs depending on their source and storage conditions. Polish Journal of Veterinary Sciences, 13(3), 507–513.

Tian, X., Jiang, X., Welch, C., Croley, T. R., Wong, T.-Y., Chen, C., Fan, S., Chong, Y., Li, R., Ge, C., Chen, C., & Yin, J.-J. (2018). Bactericidal effects of silver nanoparticles on lactobacilli and the underlying mechanism. ACS Applied Materials and Interfaces, 10(10), 8443–8450.

Vadalasetty, K. P., Lauridsen, C., Engberg, R. M., Vadalasetty, R., Kutwin, M., Chwalibog, A., & Sawosz, E. (2018). Influence of silver nanoparticles on growth and health of broiler chickens after infection with Campylobacter jejuni. BMC Veterinary Research, 14(1), 1.

van den Brule, S., Ambroise, J., Lecloux, H., Levard, C., Soulas, R., de Temmerman, P.-J., Palmai-Pallag, M., Marbaix, E., & Lison, D. (2015). Dietary silver nanoparticles can disturb the gut microbiota in mice. Particle and Fibre Toxicology, 13, 38.

Völker, C., Oetken, M., & Oehlmann, J. (2013). The biological effects and possible modes of action of nanosilver. Reviews of Environmental Contamination and Toxicology, 223, 81–106.

Wilding, L. A., Bassis, C. M., Walacavage, K., Hashway, S., Leroueil, P. R., Morishita, M., Maynard, A. D., Philbert, M. A., & Bergin, I. L. (2016). Repeated dose (28-day) administration of silver nanoparticles of varied size and coating does not significantly alter the indigenous murine gut microbiome. Nanotoxicology, 10(5), 513–520.

Williams, K., Milner, J., Boudreau, M. D., Gokulan, K., Cerniglia, C. E., & Khare, S. (2015). Effects of subchronic exposure of silver nanoparticles on intestinal microbiota and gut-associated immune responses in the ileum of Sprague-Dawley rats. Nanotoxicology, 9(3), 279–289.

Zheltonozhskaya, T. B., Permyakova, N. M., Kravchenko, O. O., Maksin, V. I., Nessin, S. D., Klepko, V. V., & Klymchuk, D. O. (2021). Polymer/inorganic hybrids containing silver nanoparticles and their activity in the disinfection of fish aquariums/ponds. Polymer-Plastics Technology and Materials, 60(4), 369–391.

Zorraquín-Peña, I., Cueva, C., Bartolomé, B., & Moreno-Arribas, M. V. (2020). Silver nanoparticles against foodborne bacteria. Effects at intestinal level and health limitations. Microorganisms, 8(1), 132.

 

Published
2021-08-21
How to Cite
Shevchenko, L. V., Dovbnia, Y. Y., Zheltonozhskaya, T. B., Permyakova, N. M., Vygovska, L. M., & Ushkalov, V. O. (2021). The effect of nanosilver in carriers based on polymer/inorganic hybrids on the quality and safety of edible chicken eggs . Regulatory Mechanisms in Biosystems, 12(3), 391-395. https://doi.org/10.15421/022153