Induction of useful mutations in Triticum aestivum in the conditions of the radionuclide-contaminated alienation zone of the Chornobyl Power Plant

  • R. А. Yakymchuk Institute of Plant Physiology and Genetics, NAS of Ukraine
  • V. F. Valyuk Institute of Plant Physiology and Genetics, NAS of Ukraine
  • L. Y. Sobolenko Pavlo Tychyna Uman State Pedagogical University
  • S. І. Sorokina Pavlo Tychyna Uman State Pedagogical University
Keywords: ionizing radiation; induced mutagenesis; frequency of mutations; spectrum of mutations


Induced mutagenesis opens great perspectives for radical genetic improvement of cultivated plants. Scientists seeking new sources and methodological approaches to improve the frequency and extend the range of mutations have drawn attention to the Zone of Alienation around the Chornobyl Nuclear Power Plant, where unique conditions of the influence of mutagenic factors have developed, and therefore needs to be studied for possible use of its territory in propagating parent material for selective breeding of wheat. Plants of winter wheat of Albatros Odesky and Zymoiarka varieties were grown within 10 km of the Chernobyl Plant, inside the Alienation Zone, in Chystohalivka, Kopachi and Yaniv villages of Chornobyl district of Kyiv Oblast. The exposure occurred in the dose of 7.2 ∙ 10–12– 50.0 ∙ 10–12 A/kg. As the control, we used the territory of the Research Institute of Physiology of Plants and Genetics of the Academy of Sciences of Ukraine (Hlevaha urbanized settlement of Vasylkivsky District of Kyiv Oblast), where the power of the exposure dose equaled 0.93 ∙ 10–12 A/kg. Frequency and spectrum of mutant forms were determined in M2–M3 generations according to the ratio of the number of families with mutagenic plants to studied M2 families. Among the observed mutations, we determined the share of the ones important for selective breeding. Chronic ionizing radiation throughout the vegetation period of winter wheat increased the level of noticeable mutations, the frequency of which exceeded the control parameters by 8.0–14.9 times. In the conditions of cultivation of winter wheat in the territory of Kopachi village, where the dose was the lowest, we recorded a high level of mutation variability which exceeded the control parameters by 8.0–9.2 times and was notably different from the frequency of mutations induced by radionuclide contamination of soil in the territories of Chystohalivka and Yaniv villages. The mutation range contained 12–20 types and depended on the density of soil contamination with radio nuclides, magnitude of exposure dose and genotype of plants. The predominant mutations were the ones related to the duration of vegetation period, length of the stem, morphology and awns of the ear. Among the detected mutations, the important selective ones accounted for 24.3–49.3%, predominant being low height, intense growth and long cylindrical ear. Because beneficial agronomic traits are highly likely to be inherited in complex with mutations that reduce the productivity of winter wheat, efficiency of direct selection of mutant forms that are valuable for selective breeding is limited. Enlargement of genetic diversity of the initial selection material using the radionuclide-induced mutagenesis resulting from contamination creates the possibility of using it in cross breeding for the purpose of implementing selective breeding genetic programs of improving wheat varieties.


Abdelaleema, M. A., & Al-Azab, K. F. (2021). Evaluation of flour protein for different bread wheat genotypes. Brazilian Journal of Biology, 81(3), 719–727.

Abrouk, M., Athiyannan, N., Müller, T., Pailles, Y., Stritt, C., Roulin, A. C., Chu, C., Liu, S., Morita, T., Handa, H., Poland, J., Keller, B., & Krattinger, S. G. (2021). Population genomics and haplotype analysis in spelt and bread wheat identifies a gene regulating glume color. Communications Biology, 4, 1–11.

Akleev, A. V. (2009). Reaktsii tkaney na hronicheskoe vozdeystvie ioniziruyuschego izlucheniya [Tissue reactions to chronic exposure to ionizing radiation]. Radiation Biology, Radioecology, 49(1), 5–20 (in Rassian).

Anders, S., Cowling, W., Pareek, A., Gupta, K. J., Singla-Pareek, S. L., & Foyer, C. H. (2021). Gaining acceptance of novel plant breeding technologies. Trends in Plant Science, 26(6), 575–587.

Beljaev, V. I., Vol’nov, V. V., Sokolova, L. V., Kuznecov, V. N., & Matsyura, A. V. (2017). Effect of sowing techniques on the agroecological parameters of cereal crops. Ukrainian Journal of Ecology, 7(2), 130–136.

Beyaz, B. R., & Yildiz, M. (2017). The use of gamma irradiation in plant mutation breeding. IntechOpen, London.

Bezpal’ko, V. V., Stankevych, S. V., Zhukova, L. V., Zabrodina, I. V., Turenko, V. P., Horyainova, V. V., Poedinceva, А. A., Batova, O. M., Zayarna, O. Y., Bondarenko, S. V., Dolya, M. M., Mamchur, R. M., Drozd, P. Y., Sakhnenko, V. V., & Matsyura, A. V. (2020). Pre-sowing seed treatment in winter wheat and spring barley cultivation. Ukrainian Journal of Ecology, 10(6), 255–268.

Bhutta, S. K., Bhutta, K. N., Aslam, M. N., Nasir, I. R., & Ali, M. A. (2019). Evaluation of growth and yield attributes of some wheat varieties under local conditions of Southern Punjab, Pakistan. Journal of Plant Breeding and Genetics, 7(1), 19–25.

Boratyński, Z., Arias, J. M., Garcia, C., Mappes, T., Mousseau, T. A., Møller, A. P., Pajares, A. J. M., Piwczyński, M., & Tukalenko, E. (2016). Ionizing radiation from Chernobyl affects development of wild carrot plants. Scientific Reports, 6, 39282.

Boubriak, I., Akimkina, T., Polischuk, V., Dmitriev, A., McCready, S., & Grodzinsky, D. (2016). Long term effects of Chernobyl contamination on DNA repair function and plant resistance to different biotic and abiotic stress factors. Cytology and Genetics, 50(6), 381–399.

Burdeniuk-Tarasevych, L. A., Lozinskyi, M. V., & Dubova, O. A. (2015). Osoblyvosti formuvannia dovzhyny stebla u selektsiinykh nomeriv pshenytsi ozymoji zalezhno vid yikh henotypiv ta umov vyroshchuvannia [The peculiarities of the formation of the stem in the selection numbers of winter wheat are depend on the genotype and conditions of growing]. Agrobiology, 1, 11–15 (in Ukrainian).

Eyges, N. S. (2013). Istoricheskaya rol Iosifa Abramovicha Rapoporta v genetike. Prodolzhenie issledovaniy s ispolzovaniem metoda himicheskogo mutageneza [The historical role of Joseph Abramovich Rapoport in genetics. Continued research using the method of chemical mutagenesis]. Vavilov Journal of Genetics and Breeding, 17(1), 162–172 (in Russian).

Geras’kin, S. A., Fesenko, S. V., & Alexakhin, R. M. (2008). Effects of non-human species irradiation after the Chernobyl NPP accident. Environment International, 34(6), 880–897.

Godwin, I. D., Rutkoski, J., Varshney, R. K., & Hickey, L. T. (2019). Technological perspectives for plant breeding. Theoretical and Applied Genetics, 132, 555–557.

Gubatov, T., & Delibaltova, V. (2020). Evaluation of wheat varieties by the stability of grain yield in multienvironmental trails. Bulgarian Journal of Agricultural Science, 26(2), 384–394.

Guscha, N. I., Perkovskaya, G. Y., Dmitriev, A. P., & Grodzinskiy, D. M. (2002). Vliyanie hronicheskogo oblucheniya na adaptivnyiy potentsial rasteniy [Influence of chronic irradiation on the adaptive potential of plants]. Radiation Biology, Radioecology, 42(2), 155–158 (in Rassian).

Hase, Y., Satoh, K., Seito, H., & Oono, Y. (2020). Genetic consequences of acute/ chronic gamma and carbon ion irradiation of Arabidopsis thaliana. Frontiers in Plant Science, 11, 336.

Hernandez-Munoz, S., Pedraza-Santos, M. E., Lopez, P. A., Gomez-Sanabria, J. M., & Morales-Garcia, J. L. (&&&&). Mutagenesis in the improvement of ornamental plants. Revista Chapingo Serie Horticultura, 25(3), 151–167.

Hlestkina, E. K. (2012). Geny, determiniruyuschie okrasku razlichnyih organov pshenitsy [Genes determining coloring of various wheat organs]. Vavilov Journal of Genetics and Breeding, 16(1), 202–216 (in Russian).

Jankowicz-Cieslak, J., Tai, T. H., Kumlehn, J., & Till, B. J. (2017). Biotechnologies for plant mutation breeding. Springer Cham, города.

Jia, Y., Selva, C., Zhang, Y., Li, B., McFawn, L. A., Broughton, S., Zhang, X., Westcott, S., Wang, P., Tan, C., Angessa, T., Xu, Y., Whitford, R., & Li, C. (2020). Uncovering the evolutionary origin of blue anthocyanins incereal grains. The Plant Journal, 101, 1057–1074.

Jiang, W., Liu, T., Nan, W., Jeewani, D. C., Niu, Y., Li, C., Wang, Y., Shi, X., Wang, C., Wang, J., Li, Y., Gao, X., & Wang, Z. (2018). Two transcription factors TaPpm1 and TaPpb1 co-regulate anthocyanin biosynthesis in purple pericarps of wheat. Journal of Experimental Botany, 69(10), 2555–2567.

Khazaei, H., Mäkelä, P. S. A., & Stoddard, F. L. (2018). Ion beam irradiation mutagenesis in rye (Secale cereale L.), linseed (Linum usitatissimum L.) and faba bean (Vicia faba L.). Agricultural and Food Science, 27, 146–151.

Konopatskaia, I., Vavilova, V., Blinov, A., & Goncharov, N. P. (2016). Spike morphology genes in wheat species (Triticum L.). Proceedings of the Latvian Academy of Sciences, Section B, 70(6), 345–355.

Krotova, L. A., & Beletskaya, E. Y. (2015). Vliyanie genotipa i sredyi na kombinatsionnuyu sposobnost’ hemomutantov myagkoj pshenitsy po produktivnosti rasteniy [Influence of genotype and environment on combining ability of bread wheat chemomutants on plant productivity]. Eurasian Union of Scientists, 19(10), 12–15 (in Russian).

Makeen, K., & Babu, S. B. (2010). Mutagenic effectiveness and efficiency of gamma rays, sodium azide and their synergistic effects in urd bean (Vigna mungo L.). World Journal of Agricultural Sciences, 2(6), 234–237.

Mir, B. A. S., Maria, M., Muhammad, S., & Ali, S. M. (2020). Potential of mutation breeding to sustain food security. IntechOpen, London.

Morgun, V. V., & Rybalka, O. I. (2017). Stratehiia henetychnoho polipshennia zernovykh zlakiv z metoiu zabezpechennia prodovolchoоi bezpeky, likuvalno-profilaktychnoho kharchuvannia ta potreb pererobnoоi promyslovosti [Strategy for genetic improvement of cereals in order to ensure food security, therapeutic and preventive nutrition and the needs of the processing industry]. Visnyk of the National Academy of Sciences of Ukraine, 3, 54–64 (in Ukrainian).

Morgun, V. V., & Yakymchuk, R. A. (2010). Viddaleni henetychni naslidky avariji na Chornobylskij AES [Remote genetic consequences of the accident at Chornobyl’ NPP]. Logos, Kyiv (in Ukrainian).

Morgun, V. V., & Yakymchuk, R. A. (2021). Henetychni naslidky Chornobylskoji katastrofy: 35 rokiv doslidzhen’ [Genetic consequences of the Chornobyl disaster: From the experience of 35 years of study]. Plant Physiology and Genetics, 53(3), 216–239 (in Ukrainian).

Morgun, V. V., Yakymchuk, R. A., & Azizov, I. V. (2019). Peculiarities of the mechanisms of spontaneous and induced by ionizing radiation and chemical factors mutagenesis. Plant Physiology and Genetics, 51(6), 463–481.

Mousseau, T. A., & Møller, A. P. (2020). Plants in the light of ionizing radiation: what have we learned from Chernobyl’, Fukushima, and other “hot” places? Frontiers in Plant Science, 11, 552.

Nazarenko, M. M. (2020). Induction of winter wheat plant structure mutationsby chemomutagenesis. Agrology, 3(2), 57‒65.

Nazarenko, M., Lykholat, Y., Grygoryuk, I., & Khromikh, N. (2018). Optimal doses and concentrations of mutagens for winter wheat breeding purposes. Part I. Grain productivity. Journal of Central European Agriculture, 19(1), 194–205.

Oladosu, Y., Rafii, M. Y., Abdullah, N., Hussin, G., Ramli, A., Rahim, H. A., Miah, G., & Usman, M. (2016). Principle and application of plant mutagenesis in crop improvement: A review. Biotechnology and Biotechnological Equipment, 30(1), 078333.

Olsen, J. E., & Dineva, S. B. (2017). Effects of chronic ionizing radiation and interactions with other environmental and climatic factors on plant growth and development. eJournal of Applied Forest Ecology, 5(1), 31–53.

Pozolotina, V. N. (2003). Otdalennye posledstvija deystvija radiatsii na rastenija [Long-term effects of radiation on plants]. Akademkniga, Ekaterinburg (in Russian).

Qaim, M. (2020). Role of new plant breeding technologies for food security and sustainable agricultural development. Applied Economic Perspectives and Policy, 42(2), 129–150.

Rasheed, A., Mujeeb-Kazi, A., Ogbonnaya, F. C., He, Z., & Rajaram, S. (2018). Wheat genetic resources in the post-genomics era: Promise and challenges. Annals of Botany, 121, 603–616.

Ryabchenko, O., & Nonhebel, S. (2016). Assessing wheat production futures in the Ukraine. Outlook on Agriculture, 45(3), 16664159.

Sanzharova, N. I., & Fesenko, S. V. (2018). Radioekologicheskie posledstvija avarii na Chernobyilskoj AES: Biologicheskie effekty, migratsija, reabilitatsija zagriaznennykh territorij [Radioecological consequences of the accident at the Chernobyl nuclear power plant: Biological effects, migration, rehabilitation of contaminated areas]. Russian Academy of Sciences, Moscow (in Russian).

Senapati, N., & Semenov, M. A. (2020). Large genetic yield potential and genetic yield gap estimated for wheat in Europe. Global Food Security, 24, 1003–1040.

Shoeva, O. Y., & Khlestkina, E. K. (2018). Anthocyanins participate in the protection of wheat seedlings against cadmium stress. Cereal Research Communications, 46(2), 242–252.

Shoeva, O. Y., Gordeeva, E. I., Arbuzova, V. S., & Khlestkina, E. K. (2017). Anthocyanins participate in protection of wheat seedlings from osmotic stress. Cereal Research Communications, 45(1), 47–56.

Shuryak, I., & Brenner, D. J. (2021). Quantitative modeling of multigenerational effects of chronic ionizing radiation using targeted and nontargeted effects. Scientifc Reports, 11, 1–11.

Sidorov, V. P. (1994). Tsitogeneticheskiy effekt v kletkah hvoi sosny obyknovennoj pri obluchenii v rezultate avarii na Chernobyilskoj AES [Cytogenetic effect in the cells of Scots pine needles during irradiation as a result of the Chernobyl accident]. Radiation Biology, Radioecology, 34(6), 847–851 (in Rassian).

Simonov, A. V., Pshenichnikova, T. A., Lapochkina, I. F., & Watanabe, N. (2017). Interaction of genes determining the spike shape of wheat and those located in the 5AL chromosome. Russian Journal of Genetics: Applied Research, 7, 21–28.

Tadesse, W., Sanchez-Garcia, M., Thabet, A. S., Tawkaz, S., Hanafi, S. E., El-Baouchi, P. S. A., Eddakir, K., El-Shamaa, K., Assefa, S., & Baum, M. (2019). Wheat breeding handbook at ICARDA. ICARDA, Beirut.

Vavilov, N. I. (1966). Izbrannyie sochineniya (Genetika i selektsiya) [Selected works (Genetics and breeding)]. Kolos, Moscow (in Russian).

Venske, E., Santos, R. S., Busanello, C., Gustafson, P., & Oliveira, A. C. (2019). Genetic diversity and stability of performance of wheat population varieties developed by participatory breeding. Hereditas, 156, 384.

Yakymchuk, R. A. (2019). Henetychni naslidky zabrudnennia navkolyshnoho seredovyshcha pryrodnymy i tekhnohennymy mutahennymy chynnykamy [Genetic consequences of the contamination of the environment with natural and technogenic mutagenic factors]. Logos, Kyiv (in Ukrainian).

Yang, G., Luo, W., Zhang, J., Yan, X., Du, Y., Zhou, L., Li, W., Wang, H., Chen, Z., & Guo, T. (2019). Genome-wide comparisons of mutations induced by carbon-ion beam and gamma-rays irradiation in rice via resequencing multiple mutants. Frontiers in Plant Science, 10, 1514.

Zaichkina, S. I., Rozanova, O. M., Aptikaeva, G. F., Achmadieva, A. C., & Klokov, D. Y. (2004). Low doses of gamma-radiation induce nonlinear dose responses in mammalian and plant cells. Nonlinearity in Biology, Toxicology and Medicine, 2, 213–221.

Zaidi, S. S., Vanderschuren, H., Qaim, M., Mahfouz, M. M., Kohli, A., Mansoor, S., & Tester, M. (2019). New plant breeding technologies for food security. Science, 363, 1390–1391.

How to Cite
YakymchukR. А., Valyuk, V. F., Sobolenko, L. Y., & SorokinaS. І. (2021). Induction of useful mutations in Triticum aestivum in the conditions of the radionuclide-contaminated alienation zone of the Chornobyl Power Plant . Regulatory Mechanisms in Biosystems, 12(3), 506-512.