Genetic analysis of morphological traits of the spike and reproductivity elements of speltoid chemomutant Triticum aestivum

  • R. А. Yakymchuk Institute of Plant Physiology and Genetics
  • L. Y. Sobolenko Pavlo Tychyna Uman State Pedagogical University
  • S. І. Sorokina Pavlo Tychyna Uman State Pedagogical University
Keywords: soft wheat; systemic mutations; ear morphology; elements of productivity; hybrid combinations; extent of phenotype domination.

Abstract

Long use of the methods of direct intraspecies hybridization in the selective breeding of varieties of Triticum aestivum L. has led to narrowing of their gene fund and close similarity of the genetic potential of their selective breeding traits. Using the method of experimental mutagenesis, one can induce systemic mutants with features of other hexaploid Triticum species which can freely cross-breed with other hybridization offspring, contributing to extension of genetic potential of cultivated wheat and creation of varieties with new levels of manifestation of economically beneficial traits. We studied the pattern of inheritance of morphological traits of the ear, length of the stem and the elements of productivity of speltoid chemomutant of T. aestivum. For the genetic analysis we used hybrids F1 and F2 of soft wheat obtained by cross-breeding speltoid macromutant (Smuhlianka speltoid), induced by the impact of aqueous solution of N-nitroso-N-methylurea (NMU) in the concentration of 0.025% on the seeds of Smuhlianka variety, with plants of Smuhlianka variety (Erythrospermum variety) and Podoloanka (Lutescens variety). To determine the pattern of inheritance the spike morphology, length of the stem and the elements of productivity in F1 hybrids, we calculated the extent of phenotype domination. In populations of F2, we examined plants with different combinations of phenotype manifestation of ear morphology. In F1 hybrids, the speltoid shape of the ear, absence of awns and red colour of the glumes indicated the dominant pattern of inheritance. The high level of phenotype domination of length of the stem and ear, number of spikelets in the main ear indicates the inheritance of the features according to intermediate, partly dominant and over-dominant types. Taking into account the segregation according to the features of spike morphology, awnedness and colour of glumes, the plants of F2 population were divided into phenotype classes, that is 12 and 6 in the combinations of respectively Smuhlianka speltoid × Smuhlianka and Smuhlianka speltoid × Podolianka. We determined that the obtained results are the consequences of dihybrid linkage which corresponds to the theoretical proportion of 12 : 3 : 1. Segregation into non-aristate and aristate plants corresponds to the proportion of monogene segregation of 3 : 1. Within separately distinguished phenotype classes, no independent inheritance of the shape of the ear and awnedness was observed. Dihybrid segregation of F2 plants into speltoid, squarehead and varieties Lutescence/Erythrospermum with quantitative superiority of speltoid plants suggests the control of the trait by two non-allele genes with epistatic interaction. The red colour of the glumes indicates the dominant monogenic pattern of inheritance. Absence of independent inheritance of the shape of the ear and awnedness indicates localization of genes which determine these features in one chromosome.

References

Ataei, R., Gholamhoseini, M., & Kamalizadeh, M. (2017). Genetic analysis for quantitative traits in bread wheat exposed to irrigated and drought stress conditions. Phyton, International Journal of Experimental Botany, 86, 228–235.

Beil, G. M., & Atkins, R. E. (1965). Inheritance of quantitative characters in grain sorghum. Iowa State College Journal of Science, 39(3), 345–348.

Boukid, F., Folloni, S., Sforza, S., Vittadini, E., & Prandi, B. (2018). Current trends in ancient grains-based foodstuffs: Insights into nutritional aspects and technological applications. Comprehensive Reviewsin Food Science and Food Safety, 17, 123–136.

Breseghello, F. (2013). Traditional and modern plant breeding methods with examples in rice (Oruza sativa L.). Journal of Agricultural and Food Chemistry, 61, 81–124.

Burdenyuk-Tarasevich, L. A. (2017). Vykorystannia henetychnoyi nestabilnosti chornobylskykh mutantiv v selektsiyi Triticum aestivum L. na adaptyvnist’ [Use of Chornobyl mutants’ genetic instability in breeding process of Triticum aestivum L. for adaptability]. Factors in Experimental Evolution of Organisms, 21, 112–116 (in Ukrainian).

Callejo, M. J., Vargas-Kostiuk, M. E., & Rodríguez-Quijano, M. (2015). Selection, training and validation process of a sensory panel for bread analysis: Influence of cultivar on the quality of breads made from common wheat and spelt wheat. Journal of Cereal Science, 61, 55–62.

Cheng, X., Chai, L., Chen, Z., Xu, L., Zhai, H., Zhao, A., Peng, H., Yao, Y., You, M., Sun, Q., & Ni, Z. (2015). Identification and characterization of a high kernel weight mutant induced by gamma radiation in wheat (Triticum aestivum L.). BMC Genetics, 16, 127.

Diordiieva, I., Riabovol, L., Serzhuk, O., Novak, A., & Kotsiuba, S. (2018). The characteristics of wheat collection samples created by Triticum aestivum L./Triticum spelta L. hibridisation. Agronomy Research, 16(5), 2005–2015.

Förster, S., Schumann, E., Weber, W. E., & Pillen, K. (2012). Discrimination of alleles and copy numbers at the Q locus in hexaploid wheat using quantitative pyrosequencing. Euphytica, 186, 207–218.

Griffing, B. (1950). Analysis of quantitative gene-action by constant parent regres-sion and related techniques. Genetics, 35, 303–321.

Guo, Z., Zhao, Y., Röder, M. S., Reif, J. C., Ganal, M. W., Chen, D., & Schnurbusch, T. (2018). Manipulation and prediction of spike morphology traits for the improvement of grain yield in wheat. Scientific Reports, 8, 1–10.

Guzman, C., Xiao, Y., Crossa, J., Gonzalez-Santoyo, H., Huerta, J., Singh, R., & Dreisigacker S. (2016). Sources of the highly expressed wheat bread making (wbm) gene in CIMMYT spring wheat germplasm and its effect on processing and bread-making quality. Euphytica, 209, 689–692.

Hlebova, L. P., & Baryisheva, N. V. (2016). Geneticheskiy control’ ustoychivosti k steblevoy rzhavchine u introgressivnyh linij tverdoy pshenitsyi, proizvodnyh Triticum timopheevii Zhuk. [Genetic control of stem rust resistance in introgressive durum wheat lines, derivatives Triticum timopheevii Zhuk.]. Biological Bulletin of Bogdan Chmelnitskiy Melitopol State Pedagogical University, 6(3), 121–131 (in Russian).

Huang, D., Zheng, Q., Melchkart, T., Bekkaoui, Y., Konkin, D. J. F., Kagale, S., Martucci, M., You, F. M., Clarke, M., Adamski, N. M., Chinoy, C., Steed, A., McCartney, C. A., Cutler, A. J., Nicholson, P., & Feurtado, J. A. (2020). Dominant inhibition of awn development by a putative zinc-finger transcriptional repressor expressed at the B1 locus in wheat. New Phytologist, 225, 340–355.

Khoury, C. K., Bjorkman, A. D., Dempewolf, H., Ramirez-Villegas, J., Guarino, L., Jarvis, A., Rieseberg, L. H., & Struik, P. C. (2014). Increasing homogeneity in global food supplies and the implications for food security. Proceedings of the National Academy of Sciences of the USA, 18, 4001–4006.

Konopatskaia, I., Vavilova, V., Blinov, A., & Goncharov, N. P. (2016). Spike morphology genes in wheat species (Triticum L.). Proceedings of the Latvian Academy of Sciences, Section B, 70(6), 345–355.

Li, H., Rasheed, A., Hickey, L. T., & He, Z. (2018). Fast-forwarding genetic gain. Trends Plant Science, 23, 184–186.

Longin, C. F. H., Ziegler, J., Schweiggert, R., Koehler, P., & Carle, T. (2016). Comparative study of hulled (einkorn, emmer, and spelt) and naked wheats (durum and bread wheat): Agronomic performance and quality traits. Crop Science, 56(1), 302–311.

Mondal, S., Rutkoski, J. E., Velu, G., Singh, P. K., Crespo-Herrera, L. A., Guzmán, C., Bhavani, S., Lan, C., He, X., & Singh, R. P. (2016). Harnessing diversity in wheat to enhance grain yield, climate resilience, disease and insect pest resistance and nutrition through conventional and modern breeding approaches. Frontiers in Plant Science, 7, 991.

Morgun, V. V., & Yakimchuk, R. A. (2015). Mutahenna aktyvnist’ radionuklidnykh zabrudnen’ blyzhnoyi zony Chornobylskoyi AES u viddaleni stroky pislia avariyi [Mutagenic activity of radionuclide contamination of the near zone of Chornobyl nuclear power plant (ChNPP) in the long term after the accident]. Plant Physiology and Genetics, 47(6), 463–473 (in Ukrainian).

Morgun, V. V., Sichkar, S. M., Pochinok, V. M., Ninieva, A. K., & Chugunkova, T. V. (2016). Kharakterystyka kolektsinykh zrazkiv spelty (Triticum spelta L.) za elementamy struktury produktyvnosti ta khlibopekarskoiu yakistyu [Characterization of spelt collection samples (Triticum spelta L.) by elements of plant productivity structure and baking quality]. Plant Physiology and Genetics, 48(2), 112–119 (in Ukrainian).

Mukhordova, M. E. (2019). Vliyanie processa formirovaniya na produktivnost rastenij gibridov ozimoj myagkoj pshenicy v usloviyah Zapadnoj Sibiri [Influence of formation process on plant productivity of winter soft wheat hybrids in the conditions of Western Siberia]. Vestnik of Ulyanovsk State Agricultural Academy, 48(4), 72–77 (in Russian).

Neyhart, J. L., Lorenz, A. J., & Smith, K. P. (2019). Multi-trait improvement by predicting genetic correlations in breeding crosses. G3: Genes, Genomes, Genetics, 9(10), 3153–3165.

Rapp, M., Beck, H., Heilig, W., Starck, P., Cuendet, C., Uhlig, F., Kurz, T., & Longin, C. F. H. (2017). Spelt: Agronomy, quality, favor of its breads from 30 varieties tested across multiple environments. Crop Science, 57(2), 734–747.

Schulthess, A. W., Reif, J. C., Ling, J., Plieske, J., Kollers, S., Ebmeyer, E., Korzun, V., Argillier, O., Stiewe, G., Ganal, M. W., Röder, M. S., & Jiang, Y. (2017). The roles of pleiotropy and close linkage as revealed by association mapping of yield and correlated traits of wheat (Triticum aestivum L.). Journal of Experimental Botany, 68(15), 4089–4101.

Sharma, P., Aggarwal, P., & Kaur, A. (2016). Biofortification: A new approach to eradicate hidden hunger. Food Reviews International, 33(1), 1–21.

Simonov, A. V., Pshenichnikova, T. A., Lapochkina, I. F., & Watanabe, N. (2015). Vzaimodejstvie genov, opredelyayushih formu kolosa myagkoj pshenicy i raspolozhenie v hromosome 5AL [Interaction of genes determining the spike shape of wheat and located in 5AL chromosome]. Vavilov Journal of Genetics and Breeding, 19(6), 57–64 (in Russian).

Simonov, A. V., Pshenichnikova, T. A., Lapochkina, I. F., & Watanabe, N. (2017). Interaction of genes determining the spike shape of wheat and those located in the 5AL chromosome. Russian Journal of Genetics: Applied Research, 7, 21–28.

Suchowilska, E., Wiwart, M., Krska, R., & Kandler, W. (2020). Do Triticum aestivum L. and Triticum spelta L. hybrids constitutr a promising source material for quality breeding of new wheat varieties? Agronomy, 43(10), 2–16.

Tadesse, W., Amri, A., Ogbonnaya, F. C., Sanchez-Garcia, M., Sohail, Q., & Baum, M. (2016). Wheat: Genetic and genomic resources for grain cereals improvement. Academic Press, Oxford.

Valekzhanin, V. S., & Korobeinikov, N. I. (2019). Izmenchivost i harakter nasledovaniya massy 1000 zeren u sortov i gibridov myagkoj yarovoj pshenicy v diallelnyh skreshivaniyah [Variability and inheritance of 1000-kernel weight in diallel crosses of Common Spring Wheat]. Achievements of Science and Technology of AICis, 33(3), 42–44 (in Russian).

Voss-Fels, K. P., Stahl, A., & Hickey, L. T. (2019). Q&A: Modern crop breeding for future food security. BMC Biology, 17(1), 2–7.

Würschum, T., Jähne, F., Langer, S. M., Longin, C. F. H., Tucker, M. R., & Leiser, W. L. (2020). Misexpression of a transcriptional repressor candidate provides a molecular mechanism for the suppression of awns by Tipped 1 in wheat. Journal of Experimental Botany, 71(12), 3428–3436.

Xie, Q., Mayes, S., & Sparkes, D. L. (2015). Spelt as a genetic resource for yield component improvement in bread wheat. Crop Science, 55(6), 2753–2765.

Xu, B. J., Chen, Q., Zheng, T., Jiang, Y. F., Qiao, Y. Y., Guo, Z. R., Cao, Y. L., Wang, Y., Zhang, Y. Z., Zong, L. J., Zhu, J., Liu, C. H., Jiang, Q. T., Lan, X. J., Ma, J., Wang, J. R., Zheng, Y. L., Wei, Y. M., & Qi, P. F. (2018). An overexpressed Q allele leads to increased spike density and improved processing quality in common wheat (Triticum aestivum). G3: Genes, Genomes, Genetics, 8(3), 771–778.

Yakimchuk, R. A. (2019). Genetic consequences of the contamination of the environment with natural and techno-genic mutagenic factors. Lohos, Kyiv (in Ukrainian).

Yurchenko, T. V., & Voloshchuk, S. I. (2016). Variabelnist’ hospodarskykh oznak u hibrydnykh pokolinnyakh pshenytsi miakoyi ozymoyi za diyi mutaheniv [Variability of agronomic traits in hybrid generations of bread winter wheat induced with mutagens]. Myronivka Bulletin, 2, 156–170 (in Ukrainian).

Published
2020-08-24
How to Cite
YakymchukR. А., Sobolenko, L. Y., & SorokinaS. І. (2020). Genetic analysis of morphological traits of the spike and reproductivity elements of speltoid chemomutant Triticum aestivum . Regulatory Mechanisms in Biosystems, 11(3), 469–474. https://doi.org/10.15421/022072