Application of enzyme probiotic drug developed based on microorganisms of the rumen of reindeer (Rangifer tarandus) in feeding cows

  • А. S. Litonina Vologda Research Center of the Russian Academy of Sciences
  • Y. M. Smirnova Vologda Research Center of the Russian Academy of Sciences
  • A. V. Platonov Vologda Research Center of the Russian Academy of Sciences
  • G. Y. Laptev Laptev
  • T. P. Dunyashev “Biotrof+” Ltd
  • M. V. Butakova Vologda State University
Keywords: enzyme probiotic supplement; first-calf heifers; dairy productivity; rumen digestion; blood metabolites

Abstract

In the current conditions of intense technologies of milk production, the feeding of dairy cows is aimed at providing fast rates of growth and maximum productivity over a short period. However, such systems of diets often have negative effects on the health of the animals as a result of metabolism malfunctioning. The present study was conducted to assess the influence of the enzyme probiotic preparation Rumit, developed based on cellulolytic bacteria isolated from the rumen of reindeer, on dairy activity, food intake, density of ciliate fauna of the rumen, feeding activity, and also metabolic profile and the level of natural resistance of newly-calved heifers. To conduct the experiment, we composed two groups (control and experimental) of first-calf heifers with 12 individuals in their first 100 days of lactation after calving. The first-calf heifers of the experimental group, in addition to the main diet, received the preparation in the amount of 50 g per individual daily in the lunch time feeding for 90 days. Inclusion of the probiotic increased the dairy productivity, particularly a 3.1 kg increase in the average yield of daily 4%-fat milk, 9.6 kg in the butterfat output, and 7.7 kg in that of dairy protein. With increase in dairy productivity, a 0.09 EFU (energy fodder units, equals 10 MJ) decrease was observed in energy expenditure for 1 kg of milk. Intake of the probiotic led to increase in the index of nutritional activity by 0.03 units and increase in the density of ciliates by 155, 900 individuals/mL. Use of the biopreparation had a positive effect on the metabolic processes in the organism of heifers. The animals of the experimental group were observed to have an increase in the content of the total protein in the blood, 12.5% decrease in the urea, and glucose concentration reached the normative values. In the first-calf heifers that had received the food supplement in addition to their diet, the physiological parameters of health normalized and the protective abilities of the organism activated, the pulse and respiration frequencies increased (by 3.8% and 6.6%), the phagocytic index grew by 30.2%, and the absorptive ability of neutrophils increased by 40%. Thus, enzyme probiotic preparation Rumit confirmed its efficiency when fed to newly-calved heifers.

References

Abrunhosa, L., Inês, A., Rodrigues, A. I., Guimarães, A., Pereira, V. L., Parpot, P., & Venâncio, A. (2014). Biodegradation of ochratoxin A by Pediococcus parvulus isolated from Douro wines. International Journal of Food Microbiology, 188, 45–52.

Al Zahal, O., Mc Gill, H., Kleinberg, A., Holliday, J. I., Hindrichsen, I. K., Duffield, T. F., & Mc Bride, B. W. (2014). Use of a direct-fed microbial product as a supplement during the transition period in dairy cattle. Journal of Dairy Science, 97(11), 7102–7114.

Alter, M. J., Arduino, M. J., Lyerla, H. C., Miller, E. R., & Tokars, J. I. (2001). Recommendations for preventing transmission of infections among chronic hemodialysis patients. Morbidity and Mortality Weekly Report, 50, 1–43.

Angelakis, E. (2017). Weight gain by gut microbiota manipulation in productive animals. Microbial Pathogenesis, 106, 162–170.

Bajaj, B. K., Claes, I. J., & Lebeer, S. (2021). Functional mechanisms of probiotics. Journal of Microbiology, Biotechnology and Food Sciences, 2021, 321–327.

Biernasiak, J., Śliżewska, K., & Libudzisz, Z. (2011). Feeds with probiotics in animal’s nutrition. In: El-Shemy, H. (Ed.). Soybean and Nutrition. IntechOpen. Pp. 181–200.

Boris, S., & Barbés, C. (2000). Role played by lactobacilli in controlling the population of vaginal pathogens. Microbes and Infection, 2(5), 543–546.

Burkin, A. A., & Kononenko, G. P. (2014). Secondary fungal metabolites (mycotoxins) in lichens of different taxonomic groups. Biology Bulletin of the Russian Academy of Sciences, 41, 216–222.

Casewell, M., Friis, C., Marco, E., McMullin, P., & Phillips, I. (2003). The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. Journal of Antimicrobial Chemotherapy, 52(2), 159–161.

Cho, K. M., Math, R. K., Hong, S. Y., Islam, S. M. A., Mandanna, D. K., Cho, J. J., & Yun, H. D. (2009). Iturin produced by Bacillus pumilus HY1 from Korean soybean sauce (kanjang) inhibits growth of aflatoxin producing fungi. Food Control, 20(4), 402–406.

Farkhutdinova, A. R. (2020). Vliyanie probioticheskogo preparata “Biolaks-u” na morfobiohimicheskie pokazateli krovi korov [The influence of the probiotic preparation “Biolax-u” on the morphobiochemical parameters of the blood of cows]. Kormlenie Sel’skohozyajstvennyh Zhivotnyh i Kormoproizvodstvo, 7, 70–76 (in Russian).

Gerasimenko, A. A., Sokolov, M. Y., Belyaeva, N. Y., & Ashenbrenner, A. I. (2015). Ocenka vliyaniya probiotiko-fermentnyh preparatov na biohimicheskie pokazateli krovi korov v razdoe [Evaluation of the effect of probiotic-enzyme preparations on the biochemical parameters of the blood of cows in milk production]. Vestnik Altajskogo Gosudarstvennogo Agrarnogo Universiteta, 125, 97–101 (in Russian).

Godziszewska, J., Pogorzelska-Nowicka, E., Brodowska, M., Jagura-Burdzy, G., & Wierzbicka, A. (2018). Detection in raw cow’s milk of coliform bacteria-reservoir of antibiotic resistance. Lwt, 93, 634–640.

Lagun, A. A., & Smirnova, L. V. (2015). Pishchevoe povedenie vysokoproduktivnyh korov pri optimizacii ih pitaniya kormovoj dobavkoj TASCO [Feeding behavior of high-yielding cows while optimizing their nutrition with TASCO feed additive]. In: Problemy i perspektivy innovacionnogo razvitiya agrotekhnologij: Materialy XIX Mezhdunarodnoj Nauchno-proizvodstvennoj Konferencii. Belgorodskij GAU, Belgorod. Pp. 177–178 (in Russian).

Laptev, G. Y., Novikova, N. I., Ilyina, L. A., Yildirim, E. A., Nagornova, K. V., Dumova, V. A., Soldatova, V. V., Bolshakov, V. N., Gorfunkel, E. P., Dubrovina, E. G., Sokolova, O. N., Nikonov, I. N., & Lebedev, A. A. (2014). Normy soderzhaniya mikroflory v rubce krupnogo rogatogo skota [Norms of microflora content in the rumen of cattle]. Biotrof, Saint Petersburg (in Russian).

Liu, H., Ji, H. F., Zhang, D. Y., Wang, S. X., Wang, J., Shan, D. C., & Wang, Y. M. (2015). Effects of Lactobacillus brevis preparation on growth performance, fecal microflora and serum profile in weaned pigs. Livestock Science, 178, 251–254.

Luzina, O. A., & Salakhutdinov, N. F. (2016). Biological activity of usnic acid and its derivatives. Part 2. Effects on higher organisms. Molecular and Physicochemical aspects. Russian Journal of Bioorganic Chemistry, 42, 249–268.

Ma, T., Suzuki, Y., & Guan, L. L. (2018). Dissect the mode of action of probiotics in affecting host-microbial interactions and immunity in food producing animals. Veterinary Immunology and Immunopathology, 205, 35–48.

Maamouri, O., Selmi, H., & M’hamdi, N. (2014). Effects of yeast (Saccharomyces cerevisiae) feed supplement on milk production and its composition in Tunisian Holstein Friesian cows. Scientia Agriculturae Bohemica, 45(3), 170–174.

Markin, Y. (2016). Probiotiki – eto zhivaya fabrika fermentov [Probiotics are a living enzyme factory]. Zhivotnovodstvo Rossii, 6, 44–45 (in Russian).

Masalov, V. N., Lyakhova, O. L., & Sysoeva, L. A. (2018). Vliyanie probiotika “Bio-20” na pokazateli fagocitarnoj i baktericidnoj aktivnosti nejtrofilov korov i telyat [Influence of probiotic “Bio-20” on indicators of phagocytic and bactericidal activity of neutrophils in cows and calves]. Mezhdunarodnyj Zhurnal Prikladnyh i Fundamental’nyh Issledovanij, 12(1), 88–92 (in Russian).

Mullins, C. R., Mamedova, L. K., Carpenter, A. J., Ying, Y., Allen, M. S., Yoon, I., & Bradford, B. J. (2013). Analysis of rumen microbial populations in lactating dairy cattle fed diets varying in carbohydrate profiles and Saccharomyces cerevisiae fermentation product. Journal of Dairy Science, 96(9), 5872–5881.

Nekrasov, R. V., Chabaev, M. G., Anisova, N. I., Anikin, A. S., Gadzhiev, A. M., & Ushakova, N. A. (2013). Probiotik novogo pokoleniya v kormlenii korov [New generation probiotic in cow feeding]. Dostizheniya Nauki i Tekhniki APK, 3, 38–40 (in Russian).

Nesme, J., & Simonet, P. (2015). The soil resistome: A critical review on antibiotic resistance origins, ecology and dissemination potential in telluric bacteria. Environmental Microbiology, 17(4), 913–930.

Oh, J., Harper, M., Melgar, A., Compart, D. P., & Hristov, A. N. (2019). Effects of Saccharomyces cerevisiae-based direct-fed microbial and exogenous enzyme products on enteric methane emission and productivity in lactating dairy cows. Journal of Dairy Science, 102(7), 6065–6075.

Parker, R. (2014). Probiotics, the other half of the antibiotic story. Animal Nutrition and Health, 29, 4–8.

Pereira, R., Bortoluzzi, C., Durrer, A., Fagundes, N. S., Pedroso, A. A., Rafael, J. M., Perim, J. E. L., Zavarize, K. C., Napty, G. S., Andreote, F. D., Costa, D. P., & Menten, J. F. M. (2019). Performance and intestinal microbiota of chickens receiving probiotic in the feed and submitted to antibiotic therapy. Journal of Animal Physiology and Animal Nutrition, 103(1), 72–86.

Reddy, K. R. N., Reddy, C. S., & Muralidharan, K. (2009). Potential of botanicals and biocontrol agents on growth and aflatoxin production by Aspergillus flavus infecting rice grains. Food Control, 20(2), 173–178.

Romanov, V. N., Bogolyubova, N. V., Laptev, G. Y., & Ilyina, L. A. (2019). Sovremennye sposoby uluchsheniya zdorovya i rosta produktivnosti zhvachnyh zhivotnyh [Modern ways to improve the health and productivity of ruminants]. FGBNU FNC VIZH imeni L. K. Ernsta, Dubrovicy (in Russian).

Schofield, B. J., Lachner, N., Le, O. T., McNeill, D. M., Dart, P., Ouwerkerk, D., Hugenholtz, P., & Klieve, A. V. (2018). Beneficial changes in rumen bacterial community profile in sheep and dairy calves as a result of feeding the probiotic Bacillus amyloliquefaciens H57. Journal of Applied Microbiology, 124(3), 855–866.

Smirnova, Y. M., Litonina, A. S., & Platonov, A. V. (2020). Effektivnost’ ispol’zovaniya probiotikov v kormlenii dojnyh korov [Efficiency of using probiotics in feeding milk cows]. Vestnik KrasGAU, 162, 145–150.

Sundset, M. A., Edwards, J. E., Cheng, Y. F., Senosiain, R. S., Fraile, M. N., Northwood, K. S., & Wright, A. D. G. (2009). Rumen microbial diversity in Svalbard reindeer, with particular emphasis on methanogenic archaea. FEMS Microbiology Ecology, 70(3), 553–562.

Syrtsev, A. (2019a). Probiotik v racione vysokoproduktivnyh korov v period razdoya [A probiotic in the diet of high-yielding cows during the milking period]. Kombikorma, 3, 69–71 (in Russian).

Syrtsev, A. (2019b). Vliyanie probiotika na biohimicheskie pokazateli krovi korov v period razdoya [Influence of a probiotic on the biochemical parameters of the blood of cows during the milk period]. Kombikorma, 5, 75–76 (in Russian).

Valitova, A. A., Mironova, I. V., & Islamova, M. M. (2014). Effektivnost’ ispol’zovaniya probioticheskoj dobavki “Vetosporin-aktiv” pri proizvodstve moloka [Efficiency of using probiotic additive “Vetosporin-active” in milk production]. Vestnik Bashkirskogo Gosudarstvennogo Agrarnogo Universiteta, 1, 45–50 (in Russian).

Vorobieva, N. V., & Popov, V. S. (2020). Vliyanie kormovoj dobavki s probiotikom na povyshenie produktivnosti i stimulyaciyu metabolizma u korov [Effect of the feed additive with probiotic on increasing productivity and stimulating metabolism in cows]. Dostizheniya Nauki i Tekhniki APK, 34(3), 75–78 (in Russian).

Wemette, M., Safi, A. G., Wolverton, A. K., Beauvais, W., Shapiro, M., Moroni, P., Welcome, F. L., & Ivanek, R. (2021). Public perceptions of antibiotic use on dairy farms in the United States. Journal of Dairy Science, 104, 3.

Xu, H., Huang, W., Hou, Q., Kwok, L. Y., Sun, Z., Ma, H., Zhao, F., Lee, Y. K., & Zhang, H. (2017). The effects of probiotics administration on the milk production, milk components and fecal bacteria microbiota of dairy cows. Science Bulletin, 62(11), 767–774.

Yadav, S., & Jha, R. (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. Journal of Animal Science and Biotechnology, 10(1), 1–11.

Yu, Y. J., Amorim, M., Marques, C., Calhau, C., & Pintado, M. (2016). Effects of whey peptide extract on the growth of probiotics and gut microbiota. Journal of Functional Foods, 21, 507–516.

Yuan, K., Liang, T., Muckey, M. B., Mendonça, L. G. D., Hulbert, L. E., Elrod, C. C., & Bradford, B. J. (2015). Yeast product supplementation modulated feeding behavior and metabolism in transition dairy cows. Journal of Dairy Science, 98(1), 532–540.

Published
2021-01-28
How to Cite
LitoninaА. S., Smirnova, Y. M., Platonov, A. V., Laptev, G. Y., Dunyashev, T. P., & Butakova, M. V. (2021). Application of enzyme probiotic drug developed based on microorganisms of the rumen of reindeer (Rangifer tarandus) in feeding cows . Regulatory Mechanisms in Biosystems, 12(1), 109-115. https://doi.org/10.15421/022117