Morphophysical reaction of Hordeum vulgare to the influence of microbial preparations

Keywords: Bacillus subtilis; Lactobacillus buchneri; barley; morphological parameters; photosynthesis parameters; grain productivity.

Abstract

Bacterial preparations contribute to the digestion of mineral nutrition, have antifungicidal activity, increase the grain productivity and biomass of cultivated crops. We studied the influence of microbiological preparations developed on the basis of microorganisms Bacillus subtilis and Lactobacillus buchneri on the growth processes, photosynthetic parameters and grain productivity of barley (Hordeum vulgare L.) of Sonet variety. The experiments were performed in 2019 in the North-West of the Russian Federation. The biological preparations were introduced by soaking seeds and treatment of the plants in the phase of third leaf with solutions of the preparations in the concentration of 1 mL/L. The laboratory surveys revealed the positive effect of the biological preparations on germination rate and energy of germination of seeds. Field trials were conducted on micro plots in six replications. During field experiments, we determined that introduction of biological preparations led to significant increase in the leaf area in the experimental plants (to 64.5%), increase in average daily growth gains (to 82.9%) and accumulation of biomass (to 73.1%). Somewhat higher efficiency was exerted by the biological preparation developed on the basis of a strain of L. buchneri. Perhaps, such effect takes place due to higher activity of pigment units of phytohormones of the auxin group. In our opinion, biological preparations accelerate the completion of the ontogenesis phases, thus the plants more rapidly achieve their genetically programmed sizes and transform to the stage of ear-formation. The studied biological preparations increased the coefficient of agricultural use of plants, and grain productivity of barley by up to 15.8%, and nutritional value remained. Microbial preparations on the basis of B. subtilis and L. buchneri exhibited efficiency, and their trials shall be continued on other crops on industrial scales.

References

Barber, N. A., Chantos-Davidson, K. M., Amel Peralta, R., Sherwood, J. P., & Swingley, W. D. (2017). Soil microbial community composition in tallgrass prairie restorations converge with remnants across a 27-year chronosequence. Environmental Microbiology, 19(8), 3118–3131.

Bezgodova, I. L., Konovalova, N. Y., Pryadil’shchikova, E. N., & Konovalova, S. S. (2018). Vliyanie mineral’nogo pitaniya i biopreparatov pri vozdelyvanii yachmenya i goroha na zernovye celi [Impact of mineral nutrition and biological products in barley and pea cultivation for grain purposes]. AgroZooTekhnika, 1(1), 1–10 (in Russian).

Bondarenko, A. N., & Zvolinskij, V. P. (2012). Izuchenie biopreparatov na osnove associativnyh azotfiksiruyushchih mikroorganizmov pri vozdelyvanii yarovyh zernovyh kul’tur v Astrahanskoj oblasti [The study of biological products based on associative nitrogen-fixing microorganisms in the cultivation of spring crops in the Astrakhan region]. Agrohimicheskij Vestnik, 2, 22–23 (in Russian).

Chebotar’, V. K., Zaplatkin, A. N., Shcherbakov, A. V., Mal’fanova, N. V., Startseva, A. A., & Kostin, Y. V. (2016). Microbial preparations on the basis of endophytic and rhizobacteria to increase the productivity in vegetable crops and spring barley (Hordeum vulgare L.), and the mineral fertilizer use efficiency. Agricultural Biology, 51(3), 333–342.

Chernyad’ev, I. I. (2009). The protective action of cytokinins on the photosynthetic machinery and productivity of plants under stress. Applied Biochemistry and Microbiology, 45(4), 351–362.

Chicherin, I. Y., Pogorel'skiy, I. P., Lundovskikh, I. A., Malov, A. A., Shabalina, M. R., & Darmov, I. V. (2014). Dinamika soderzhaniya laktobatsill, mikrobnykh metabolitov i antibakterial’noy aktivnosti rastushchey kul’tury Lactobacillus plantarum 8P-A3 [Dynamics of the content of lactobacilli, microbial metabolites and antibacterial activity of the growing culture of Lactobacillus plantarum 8P-A3]. Zhurnal Infektologii, 5(3), 50–55 (in Russian).

Danilova, Т. A., Adzhieva, A. A., Danilina, G. A., Polyakov, N. B., Soloviev, A. I., & Zhukhovitsky, V. G. (2019). Antimicrobial activity of supernatant of Lactobacillus plantarum against pathogenic microorganisms. Bulletin of Experimental Biology and Medicine, 167(6), 751–754.

Falardeau, J., Wise, C., Novitsky, L., & Avis, T. J. (2013). Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. Journal of Chemical Ecology, 39, 869–878.

Ge, T., Li, B., Zhu, Z., Hu, Y., Yuan, H., Dorodnikov, M., Jones, D. L., Wu, J., & Kuzyakov, Y. (2017). Rice rhizodeposition and its utilization by microbial groups depends on N fertilization. Biology and Fertility of Soils, 53(1), 37–48.

Glick, B. R. (1995). The enhancement of plant growth by free-living bacteria. Canadian Journal of Microbiology, 41(2), 109–117.

Gosudarstvennyj katalog pesticidov i agrohimikatov, razreshennyh k primeneniyu na territorii Rossijskoj Federacii [The state catalog of pesticides and agrochemicals approved for use on the territory of the Russian Federation] (2018). Ministerstvo Sel’skogo Hozyajstva Rossijskoj Federacii, Moscow (in Russian).

Gummalla, S., & Broadbent, J. R. (1999). Tryptophan catabolism by Lactobacillus casei and Lactobacillus helveticus cheese flavor adjuncts. Journal of Dairy Science, 82(10), 2070–2077.

Höflich, G., Wiehe, W., & Hecht-Buchholz, C. (1995). Rhizosphere colonization of different crops with growth promoting Pseudomonas and Rhizobium bacteria. Microbiological Research, 150(2), 139–147.

Höflich, G., Wiehe, W., & Kühn, G. (1994). Plant growth stimulation by inoculation with symbiotic and associative rhizosphere microorganisms. Experientia, 50(10), 897–905.

Jeon, J. S., Lee, S. S., Kim, H. Y., Ahn, T. S., & Song, H. G. (2003). Plant growth promotion in soil by some inoculated microorganisms. The Journal of Microbiology, 41(4), 271–276.

Kolmykova, T. S., & Lukatkin, A. S. (2012). Effektivnost’ regulyatorov rosta rastenij pri dejstvii abioticheskih stressovyh faktorov [Efficiency of plant growth regulators under abiotic stresses]. Agrohimiya, 1, 83–94 (in Russian).

Kunicyna, V. V., & Stupina, L. A. (2018). Vliyanie preparatov associativnyh azotfiksiruyushchih bakterij na formirovanie produktivnosti yarovogo yachmenya v Priobskoj zone [The effect of associative nitrogen-fixing bacteria on the formation of spring barley productivity in the Priobsky zone]. Ot bioproduktov k bioekonomike: Materialy II mezhregional’noj nauchno-prakticheskoj konferencii (12–13 April 2018). Alttajskij Gosudarstvennyj Tekhnicheskij Universitet imeni I. I. Polzunova, Barnaul. Pp. 139–142 (in Russian).

Kuwaki, S., Ohhira, I., Takahata, M., Hirota, A., Murata, Y., & Tada, M. (2004). Effects of the fermentation product of herbs by lactic acid bacteria against phytopathogenic filamentous fungi and on the growth of host plants. Journal of Bioscience and Bioengineering, 98(3), 187–192.

Lapitskaya, Y. A., Petrov, V. B., Nikonov, I. N., Kryazhevskikh, L. A., & Laptev, G. Y. (2008). Preparat “Biotrof-600” – stimulyator rosta tomatov ["Biotrof-600" -s a tomato growth stimulator]. Agrarnyy Vestnik Urala, 5, 42–44 (in Russian).

Limanska, N., Ivanytsia, T., Basiul, O., Krylova, K., Biscola, V., Chobert, J.-M., Ivanytsia, V. O., & Haertle, T. (2013). Effect of Lactobacillus plantarum on germination and growth of tomato seedlings. Acta Physiologiae Plantarum, 35(5), 1587–1595.

Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541–556.

Maksimov, I. V., Singkh, B. P., Cherepanova, Y. A., Burkhanova, G. F., & Khayrullin, R. M. (2020). Perspektivy primeneniya bakteriy – produtsentov lipopeptidov dlya zashchity rasteniy (obzor) [Prospects for the use of bacteria – producers of lipopeptides for plant protection (review)]. Prikladnaya Biokhimiya i Mikrobiologiya, 56(1), 19–34 (in Russian).

Montesinos, E., Bonaterra, A., Badosa, E., Frances, J., Alemany, J., Llorente, I., & Moragrega, C. (2002). Plant-microbe interactions and the new biotechnological methods of plant disease control. International Microbiology, 5, 169–175.

Moya, P., Barrera, V., Cipollone, J., Bedoya, C., Kohan, L., Toledo, A., & Sisterna, M. (2020). New isolates of Trichoderma spp. as biocontrol and plant growth-promoting agents in the pathosystem Pyrenophora teres-barley in Argentina. Biological Control, 141, 104–152.

Novickij, A. A., & Gniteckij, V. A. (2012). Em-tekhnologiya v rastenievodstve [Em technologies in crops]. Vestnik Omskogo Gosudarstvennogo Agrarnogo Universiteta, 4(8), 20–24 (in Russian).

Nuccio, E. E., Hodge, A., Pett-Ridge, J., Herman, D. J., Weber, P., & Firestone, M. K. (2013). An arbuscular mycorrhizal fungus modifies the soil microbial community and nitrogen cycling during litter decomposition. Environmental Microbiology, 15(6), 1870–1881.

Pavlovskaya, N. Y., Timakov, A. G., Yakovleva, I. V., & Mameyev, V. V. (2019). Izucheniye effektivnosti primeneniya biopreparatov na fotosinteticheskuyu deyatel’nost’ i urozhay yarovogo yachmenya [The study of the effectiveness of the use of biological products for photosynthetic activity and the harvest of spring barley]. Vestnik IRGSKHA, 90, 44–50.

Pérez-Montaño, F., Alías-Villegas, C., Bellogín, R. A., Del Cerro, P., Espuny, M. R., Jiménez-Guerrero, I., López-Baena, F. J., Ollero, F. J., & Cubo, T. (2014). Plant growth promotion in cereal and leguminous agricultural important plants: From microorganism capacities to crop production. Microbiological Research, 169, 325–336.

Pigorev, I. Y., Tarasov, S. A. (2014). Vliyanie biopreparatov na fotosinteticheskuyu deyatel’nost’ i urozhajnost’ ozimoj pshenicy [The influence of biological products on photosynthetic activity and yield of winter wheat]. Vestnik Kurskoj Gosudarstvennoj Sel’skohozyajstvennoj Akademii, 8, 47–50 (in Russian).

Porcel, R., Zamarreño, Á. M., García-Mina, J. M., & Aroca, R. (2014). Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biology, 14, 36.

Ryabova, O. V. (2016). K voprosu razrabotki mikrobiologicheskih preparatov (fungicidov i udobrenij) dlya uslovij Severo-Vostoka evropejskoj chasti Rossijskoj Federacii [On the problem of development of microbiological agents (fungicides and fertilizers) for conditions of the Northeast of the European part of the Russian Federation]. Agrarnaya Nauka Evro-Severo-Vostoka, 50, 31–40 (in Russian).

Rzhevskaya, V. S., Oturina, I. P., & Teplitskaya, L. M. (2014). Izucheniye biologicheskikh svoystv shtammov molochnokislykh bakteriy [The study of the biological properties of strains of lactic acid bacteria]. Uchenyye Zapiski Krymskogo Federal’nogo Universiteta Imeni V. I. Vernadskogo, Biologiya, Khimiya, 27(1), 145–160 (in Russian).

Sabaté, D. C., Petroselli, G., Erra-Balsells, R., Audisio, M. C., & Pérez Brandan, C. (2020). Beneficial effect of Bacillus sp. P12 on soil biological activities and pathogen control in common bean. Biological Control, 141, 1–8.

Seregina, I. I., Shumilin, A. O., Vigilyanskiy, Y. M., Belopukhov, S. L., Grishina, Y. A., Tsygutkin, A. S., & Litvinskiy, V. A. (2018). Formirovaniye urozhaynosti zerna i pokazateli kachestva lyupina belogo (Lupinus albus L.) pri primenenii selenita natriya [The formation of grain yield and quality indicators of white lupine (Lupinus albus L.) when using sodium selenite]. Agrokhimiya, 7, 73–80 (in Russian).

Shuliko, N. N., Khamova, O. F., Voronkova, N. A., Tukmacheva, Y. V., & Doronenko, V. D. (2019). Vliyaniye kompleksnogo primeneniya udobreniy i biopreparatov na effektivnoye plodorodiye chernozema vyshchelochennogo i produktivnost’ yachmenya [The effect of the integrated use of fertilizers and biological products on the effective fertility of leached chernozem and barley productivity]. Agrokhimiya, 2, 13–20 (in Russian).

Taylor, C. C., Ranjit, N. J., Mills, J. A., Neylon, J. M., & Kung Jr., L. (2002). The effect of treating whole-plant barley with Lactobacillus buchneri 40788 on silage fermentation, aerobic stability, and nutritive value for dairy cows. Journal of Dairy Science, 85(7), 1793–1800.

Tsavkelova, E. A., Klimova, S. Y., Cherdyntseva, T. A., & Netrusov, A. I. (2006). Microbial producers of plant growth stimulators and their practical use: A review. Applied Biochemistry and Microbiology, 42(2), 117–126.

Vasil’yeva, Y. N., Akhtemova, G. A., Zhukov, V. A., & Tikhonovich, I. A. (2019). Endofitnyye mikroorganizmy v fundamental’nykh issledovaniyakh i sel’skom khozyaystve [Endophytic microorganisms in basic research and agriculture]. Ekologicheskaya Genetika, 17, 19–32 (in Russian).

Veselova, S. V., Burkhanova, G. F., Rumyantsev, S. D., Blagova, D. K., & Maksimov, I. V. (2019). Bakterii roda Bacillus v regulyatsii ustoychivosti pshenitsy k obyknovennoy zlakovoy tle Schizaphis graminum Rond. [Bacillus bacteria in the regulation of wheat resistance to common cereal aphid Schizaphis graminum Rond.]. Prikladnaya Biokhimiya i Mikrobiologiya, 55, 56–63 (in Russian).

Vorobejkov, G. A., Pavlova, T. K., Kondrat, S. V., Lebedev, V. N., Yurgina, V. S., Muratova, R. R., Makarov, P. N., Dubenskaya, G. I., & Hmelevskaya, I. A. (2011). Issledovanie effektivnosti shtammov associativnyh rizobakterij v posevah razlichnyh vidov rastenij [A study of associative rhizobacteria efficiency for economic plants]. Izvestiya Rossijskogo Gosudarstvennogo Pedagogicheskogo Universiteta imeni A. I. Gercena, 2011, 114–123 (in Russian).

Xie, S.-S., Wu, H.-J., Zang, H.-Y., Wu, L.-M., Zhu, Q.-Q., & Gao, X.-W. (2014). Plant growth promotion by spermidine-producing Bacillus subtilis OKB105. Molecular Plant-Microbe Interactions, 27, 655–663.

Yasir, T. A., Wasaya, A., Hussain, M., Ijaz, M., Farooq, M., Farooq, O., Nawaz, A., & Hu, Y.-G. (2019). Evaluation of physiological markers for assessing drought tolerance and yield potential in bread wheat. Physiology and Molecular Biology of Plants, 25, 1163–1174.

Yeryashev, A. P., Shaposhnikov, A. S., & Yeryashev, P. A. (2017). Fotosinteticheskaya deyatel’nost’ i produktivnost’ pivovarennogo yachmenya v zavisimosti ot urovnya mineral’nogo pitaniya i norm vyseva [Photosynthetic activity and productivity of malting barley depending on the level of mineral nutrition and seeding rates]. Vestnik Ul’yanovskoy Gosudarstvennoy Sel’skokhozyaystvennoy Akademii, 37, 19–24 (in Russian).

Yevdokimova, M. A., & Mar’ina-Chermnykh, O. G. (2018). Vliyaniye regulyatorov rosta na fotosinteticheskuyu deyatel’nost’ posevov yarovogo yachmenya [The influence of growth regulators on the photosynthetic activity of spring barley crops]. Vestnik Ul’yanovskoy Gosudarstvennoy Sel’skokhozyaystvennoy Akademii, 44(4), 91–97 (in Russian).

Published
2020-05-24
How to Cite
Rassokhina, I. I., Platonov, A. V., Laptev, G. Y., & Bolshakov, V. N. (2020). Morphophysical reaction of Hordeum vulgare to the influence of microbial preparations . Regulatory Mechanisms in Biosystems, 11(2), 220-225. https://doi.org/10.15421/022032