Morpho-anatomical structure and development of fruit in Asyneuma canescens (Саmpanulaceae)

  • R. R. Andreychuk Ivan Franko National University of Lviv
  • V. P. Kolomiychuk
  • A. V. Odintsova Ivan Franko National University of Lviv
Keywords: bellflower family; inferior ovary; capsular fruit; axicorn; fruit dehiscence; seed; fruit wall.


The most usual fruit type in the family Саmpanulaсеае is an inferior multi-seeded capsule. In Саmpanula and related genera, A. Kolakovsky determined a new type of capsule, characterized by a specialized organ, axicorn. Some types of axicorn capsules were determined depending on the way of dehiscence. In Campanula, capsule dehiscence is called axicorn-fissuricidal mode, while in Asyneuma – axicorn-valvate mode with scaliformis valves. The precise differences between slit and valve so far have not been identified. In this connection, we performed the study of the inner fruit structure and dehiscence in Asyneuma canescens intending to compare the results with those for Саmpanula species. Anatomical fruit structure was studied under a light microscope on temporary preparations of transversal and longitudinal sections. For the first time, the obtained data provide precise characteristics of the inner fruit morphology, the anatomy of the fruit wall, and dehiscence mode in A. canescens. The survey revealed predominance in the ovary of a synascidiate zone with axile placentation. In the anatomical structure of the fruit wall, there we found a parenchymatous mesocarpium, non-lignified exo- and endocarpium, and lignified elements of fruit – axicorns, located in the small upper part of the septa. Fruit dehiscence in A. canescens occurs in two steps. First, during early flower development, narrow-oval dips are formed on the septum radii; during the fruiting period, a hippocrepiform slit at the lower margin of each dip develops. At this time axicorns detach from the central column of the ovary following a curved direction, meaning the formation of the septifragal slit. During the second stage, the longitudinal slits are formed from the lowest point of the hippocrepiform slit to the fruit base. These slits facilitate seed release from the capsule. Fruit in A. canescens we define as an inferior trilocular syncarpous capsule with two-stage, hippocrepiform and laminar dehiscence. Our study confirms resemblance of anatomical structure and dehiscence mode of fruit in A. canescens and species of the section Rapunculus of the genus Cаmpanula with erect capsules. We consider it inexpedient to accept the new fruit type for A. canescens, because differences compared with species of Cаmpanula are derivative and concern the small size of the axicorn slit and the appearance of additional slits only.


Alçitepe, E. (2008). Morphological, anatomical and palynological studies on Asyneuma michauxioides (Campanulaceae). Biologia, 63(3), 338–342.

Andreychuk, R., & Odintsova, A. (2019). Morphological and anatomical structure of Campanula latifolia L. fruits. Studia Biologica, 13(1), 95–105.

Andreychuk, R., & Odintsova, A. (2020). Suchasnyi stan karpologichnykh doslidzen u rodyni Campanulaceae Juss. u zviazku zi systematykoiu [Actual state of carpological studies in the family Campanulaceae Juss. with regard to its systematics]. Studia Biologica, 14(2), 95–116 (in Ukrainian).

Artjuschenko, Z. T., & Theodorov, A. A. (1986). Atlas po opisatelnoy morfologyi vysshykh rastenyi. Plod [Organographia illustrata plantarum vascularium. Fructus]. Nauka, Leningrad (in Russian).

Barykina, R. P., Veselova, T. D., Deviatov, A. G., Djalilova, H. H., Iljina, G. M., & Chubatova, N. V. (2004). Spravochnik po botanicheskoj mikrotekhnike. Osnovy i metody [Handbook of the botanical microtechniques. Basics and Methods]. Moscow University Press, Moscow (in Russian).

Bobrov, A. V., & Romanov, M. S. (2019). Morphogenesis of fruits and types of fruit of angiosperms. Botany Letters, 166(3), 366–399.

Bojňanský, V., & Fargašová, A. (2007). Atlas of seeds and fruits of Central and East-European flora the Carpathian Mountains Region. Springer, Dordrecht.

Borsch, T., Korotkova, N., Raus, T., Lobin, W., & Löhne, C. (2009). The petD group II intron as a species level marker: Utility for tree inference and species identification in the diverse genus Campanula (Campanulaceae). Willdenowia, 39, 7–33.

Dremliuga, N. G. (2013a). Morphological peculiarities of fruits of the species from subgenus Rapunculus (Fourr.) Boiss. of genus Campanula L. in the flora of Ukraine. Modern Phytomorphology, 4, 321–324.

Dremliuga, N. G. (2013b). The fruіts’ morphological peculiarities of species from section medium DC. of genus Campanula L. in the flora of Ukraine. Chornomors’ki Botanical Zournal, 9(1), 24–29.

Eddie, W. M. M., Shulkina, T., Gaskin, J., Haberle, R. C., & Jansen, R. K. (2003). Phylogeny of Campanulaceae s. str. inferred from ITS sequences of nuclear ribosomal DNA. Annals of the Missouri Botanical Garden, 90(4), 554–575.

Fedina, L. A., Maslov, M. V., & Gorovoy, P. G. (2016). New albiflorus forms of vascular plants on the Russian Far East. Acta Biologica Sibirica, 2(4), 110–117.

Haberle, R. C., Dang, A., Lee, T., Peñaflor, C., Cortes-Burns, H., Oestreich, A., Raubeson, L., Cellinese, N., Edwards, E. J., Kim, S.-T., Eddie, W. M. M., & Jansen, R. K. (2009). Taxonomic and biogeographic implications of a phylogenetic analysis of the Campanulaceae based on three chloroplast genes. Taxon, 58, 715–734.

Kaden, N. N. (1964). Esche o sposobah vskrivaniya plodov [More details about types of fruit dehiscence]. Botanical Journal, 49(12), 1776–1779 (in Russian).

Kaden, N. N., & Smirnova, S. A. (1974). K metodike sostavleniya karpologicheskih opisaniy [Notes for the methods of compiling the carpological descriptions]. Naukova Dumka, Kyiv. Pp. 54–67 (in Russian).

Kallajxhiu, N., Naqellari, P., Pupuleku, B., & Turku, S. (2014). Palynological description of five plants of different families in the Albanian region. International Journal of Botany and Research, 4(2), 31–38.

Khansari, E., Zarre, S., Alizadeh, K., Attar, F., Aghabeigi, F., & Salmaki, Y. (2012). Pollen morphology of Campanula (Campanulaceae) and allied genera in Iran with special focus on its systematic implication. Flora, 207, 203–211.

Kim, H.-J., Son, D. C., Kim, H.-J., Choi, K., Oh, S.-H., & Kang, S.-H. (2017). The chemotaxonomic classification of Korean Campanulaceae based on triterpene, sterol and polyacetylene contents. Biochemical Systematics and Ecology, 74, 11–18.

Kolakovsky, A. A. (1995). Semeystvo Kolokolchikovih [Family Campanulaceae]. Мoscow (in Russian).

Lakušić, D., Eddie, W. M. M., Shuka, L., Lazarević, M., & Barina, Z. (2019). The evolving “fate” of Asyneuma comosiforme: Validation of Hayekia, a new monotypic genus of Campanulaceae from Albania. Willdenowia, 49(1), 81–93.

Lammers, T. G. (2007). Campanulaceae. In: Kubitzki, K. (Ed.). The families and genera of vascular plants. VIII, Flowering plants – Еudicots: Asterales. Springer, Berlin. Pp. 26–56.

Mansion, G., Parolly, G., Crowl, A. A., Mavrodiev, E., Cellinese, N., Oganesian, M., Fraunhofer, K., Kamari, G., Phitos, D., Haberle, R., Akaydin, G., Ikinci, N., Raus, T., & Borsch, T. (2012). How to handle speciose clades? Mass taxon-sampling as a strategy towards illuminating the natural history of Campanula (Campanuloideae). PLoS One, 7(11), e50076.

Mosyakin, S. L., & Fedoronchuk, M. M. (1999). Vascular plants of Ukraine. A nomenclatural checklist. M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine, Kyiv.

Odintsova, А. (2016). Lokulitsydne rozkryvannia verkhnikh i nyzhnikh korobchastykh plodiv u poriadku Myrtales [Loculicidal dehiscence of superior and inferior capsular fruits in Myrtales]. Studia Biologica, 10(3–4), 129–140 (in Ukrainian).

Roquet, C., Sáez, L., Aldasoro, J. J., Susanna, A., Alarcón, M. L., & Garcia-Jacas, N. (2008). Natural delineation, molecular phylogeny and floral evolution in Campanula. Systematic Botany, 33(1), 203–217.

Roquet, C., Sanmartín, I., Garcia-Jacas, N., Sáez, L., Susanna, A., Wikström, N., & Aldasoro, J. J. (2009). Reconstructing the history of Campanulaceae with a Bayesian approach to molecular dating and dispersal-vicariance analyses. Molecular Phylogenetics and Evolution, 52, 575–587.

Roth, I. (1977). Fruits of Angiosperms. Gebrüder Borntraenger, Berlin, Stuttgart. Vol. 10(1).

Stefanovic, S., & Lakušić, D. (2009). Molecular reappraisal confirms that the Campanula trichocalycina–pichleri complex belongs to Asyneuma (Campanulaceae). Botanica Serbica, 33, 21–31.

Visyulina, O. D. (1961). Rodyna Dzvonykovi [Family Campanulaceae]. In: Flora URSR. Academy of Science of the URSR, Kyiv. Vol. 10. Pp. 399–453 (in Ukrainian).

Yoo, K.-O., Crowl, A. A., Kim, K.-A., Cheon, K.-S., & Cellinese, N. (2018). Origins of East Asian Campanuloideae (Campanulaceae) diversity. Molecular Phylogenetics and Evolution, 127, 468–474.

Zhuo, Z., Wen, J., Li, G., & Sun, H. (2011). Phylogenetic assessment and biogeographic analyses of tribe Peracarpeae (Campanulaceae). Plant Systematics and Evolution, Springer.

How to Cite
Andreychuk, R. R., Kolomiychuk, V. P., & Odintsova, A. V. (2020). Morpho-anatomical structure and development of fruit in Asyneuma canescens (Саmpanulaceae) . Regulatory Mechanisms in Biosystems, 11(4), 513-519.