Antianemic action of the iron (IV) clathrochelate complexes

  • V. B. Dukhnitsky National University of Life and Environmental Sciences of Ukraine
  • I. M. Derkach National University of Life and Environmental Sciences of Ukraine
  • M. O. Plutenko Taras Shevchenko National University of Kyiv
  • I. O. Fritsky Taras Shevchenko National University of Kyiv
  • S. S. Derkach National University of Life and Environmental Sciences of Ukraine
Keywords: iron deficiency anemia; clinical studies; iron (IV); piglets; morphological parameters; biochemical indicators.


Anemia is one of the most common non-contagious diseases of pigs. Modern antianemic drugs have several drawbacks, so finding new drugs is a pressing issue. We previously reported the results of preclinical studies of iron in rare high valence IV. This allowed us to determine, supplement, and generalize the data on clinical studies of the new drugs with the active substance iron (IV) clathrochelate. Therefore, we studied its antianemic effect on piglets. Experiments were carried out on piglets-analogues neonates, which were divided into three groups: control and two experimental groups. Piglets were kept with sows on suckling. For the purpose of prevention of iron deficiency anemia, the traditional solution of iron dextran was administered once intramuscularly to piglets of I control group. The aqueous solution of iron (IV) clathrochelate complexes was administered once intramuscularly to piglets of II experimental group. Iron (IV) clathrochelate complexes were dissolved in a solvent of rheopolyglucin and administered once intramuscularly to piglets of III experimental group. 1 mL of test solutions contained 100 mg of active substance. The investigative material were the samples of blood and serum of piglets, their liver and spleen. The experiment lasted during a 30-day period since the birth of the piglets. According to the results of the experiments, iron (IV) clatrochelate complexes which were dissolved in water for injection and rheopolyglucin had higher antianemic activity compared to the control. This is evidenced by the dynamics of probable changes in the number of erythrocytes, hemoglobin content and hematocrit, iron content in serum and its mass fraction in the blood, liver and spleen of piglets. The effectiveness of the action of iron (IV) clatrochelate complexes is demonstrated by the full supply of piglets with iron and its higher bioavailability.


Batrakov, A., Travkin, O., & Jakovleva, E. (2005). Profilaktika alimentarnoj anemii u porosjat [Prevention of malignant anemia of piglets]. Veterinarija, 12, 44–45 (in Russian).

Bhattarai, S., Framstad, T., & Nielsen, J. P. (2019). Association between sow and piglet blood hemoglobin concentrations and stillbirth risk. Acta Veterinaria Scandinavica, 61(1), 61.

Bhattarai, S., Framstad, T., & Nielsen, J. P. (2019). Iron treatment of pregnant sows in a Danish herd without iron deficiency anemia did not improve sow and piglet hematology or stillbirth rate. Acta Veterinaria Scandinavica, 61(1), 60.

Bonkovsky, S., & Herbert, L. (1991). Iron and the liver. The American Journal of the Medical Sciences, 301(1), 32–43.

Camaschella, C. (2013). Iron and hepcidin: A story of recycling and balance. Hematology. American Society of Hematology. Education Program, 2013(1), 1–8.

Chen, X., Zhang, X., Zhao, J., Tang, X., Wang, F., & Du, H. (2019). Split iron supplementation is beneficial for newborn piglets. Biomedicine and Pharmacotherapy, 120, 109479.

Churio, O., Durán, E., Guzmán-Pino, S. A., & Valenzuela, C. (2018). Use encapsulation technology to improve the efficiency of an iron oral supplement to prevent anemia in suckling pigs. Animals, 9(1), 1.

Cooper, C. A., Moraes, L. E., Murray, J. D., & Owens, S. D. (2014). Hematologic and biochemical reference intervals for specific pathogen free 6-week-old Hampshire-Yorkshire crossbred pigs. Journal of Animal Science and Biotechnology, 5(1), 5.

Derkach, I. (2017). Suchasni tendentsii na vitchyznianomu rynku ferumvmisnykh preparativ dlia tvaryn [Modern trends of the Ukrainian market of ironcontaining products for animals]. Naukovyi Visnyk Lvivskoho Natsionalnoho Universytetu Veterynarnoi Medytsyny ta Biotekhnolohii Imeni S. Z. Hzhytskoho, 19(78), 23–25 (in Ukrainian).

Derkach, I., Derkach, S., & Sotnichenko, I. (2018). Ferum u skladi kormovykh dobavok, hotovykh kormiv ta premiksiv na farmatsevtychnomu rynku v Ukraini [Iron in the content of feed additives, prepared feeds and premixes on the pharmaceutical market in Ukraine]. Naukovyi Visnyk Lvivskoho Natsionalnoho Universytetu Veterynarnoi Medytsyny ta Biotekhnolohii Imeni S. Z. Hzhytskoho, 20(83), 290–294 (in Ukrainian).

Diel, J., Bertoldi, A., & Pizzol, T. (2018). Iron salts and vitamins: Use, purchase and sources of obtainment among children in Brazil. Cad Saude Publica, 34(9), e00133317.

Dos Santos Vieira, D. A., Hermes Sales, C., Galvão Cesar, C. L., Marchioni, D. M., & Fisberg, R. M. (2018). Influence of haem, non-haem, and total iron intake on metabolic syndrome and its components: A population-based study. Nutrients, 10(3), 314.

Dukhnitsky, V. B., Derkach, I. M., Derkach, S. S., Plutenko, M. O., & Fritsky, I. O. (2019). Influence of iron (IV) clathrochelate complex on quail blood parameters and weight characteristics. Ukrainian Journal of Ecology, 9(3), 126–131.

Dukhnitsky, V. B., Derkach, I. M., Plutenko, M. O., Fritsky, I. O., & Derkach, S. S. (2018). Vyznachennia parametriv hostroi toksychnosti ferumu (IV) na bilykh myshakh [Determination of the accumulative toxicity parameters of iron (IV) on white mice]. Ukrainian Journal of Ecology, 8(2), 308–312 (in Ukrainian).

Dukhnitsky, V. B., Kalachniuk, L. H., Derkach, I. M., Derkach, S. S., Plutenko, M. O., & Fritsky, I. O. (2020). Iron (IV) hexahydrazide clathrochelate complexes: The chronic toxicity study. Ukrainian Journal of Ecology, 9(3), 18–23.

Egeli, A. K., Framstad, T., & Morberg, H. (1998). Clinical biochemistry, haematology and body weight in piglets. Acta Veterinaria Scandinavica, 39(3), 381–393.

Ganz, T. (2013). Systemic iron homeostasis. Physiological Reviews, 93(4), 1721–1741.

Ganz, T., & Nemeth, E. (2006). Iron imports. IV. Hepcidin and regulation of body iron metabolism. American Journal of Physiology. Gastrointestinal and liver physiology, 290(2), G199–G203.

Ganz, T., & Nemeth, E. (2012). Hepcidin and iron homeostasis. Biochimica et Biophysica Acta, 1823(9), 1434–1443.

Grabovskyi, S. S. (2014). Effect of natural immunomodulators influence on cellular immunity indices and cortisol level in rat’s blood at pre-slaughter stress. Studia Biologica, 8(1), 93–102.

Kalynovska, L. (2014). Zareiestrovani v Ukraini preparaty dlia profilaktyky i likuvannia tvaryn pry anemii [Medicines which are registered in Ukraine for the prevention and treatment of animals with anemia]. Naukovo-Tekhnichnyi Biuleten Instytutu Biolohii Tvaryn i Derzhavnoho Naukovo-Doslidnoho Kontrolnoho Instytutu Veterynarnykh ta Kormovykh Dobavok, 15(1), 279–283 (in Ukrainian).

Khariv, I. I. (2013). Vplyv “Amprolinsylu” ta brovitakoktsydu na pokaznyky klitynnoho i humoralnoho imunitetu indykiv za eymeriozo-histomonoznoyi invaziyi [Influence of amprolissil and broth tacticide on indicators of cell and humoral immunity of turkey cocks under the emeritus-histomonous invasion]. Biolohiya Tvaryn, 15(4), 159–165.

Killip, S., Bennett, M. (2008). Iron deficiency anemia. American Family Physician, 78(8), 671–678.

Kim, J. C., Wilcock, P., & Bedford, M. R. (2018). Iron status of piglets and impact of phytase superdosing on iron physiology: A review. Animal Feed Science and Technology, 235, 8–14.

Klem, T. B., Bleken, E., Morberg, H., Thoresen, S. I., & Framstad, T. (2010). Hematologic and biochemical reference intervals for Norwegian crossbreed grower pigs. Veterinary Clinical Pathology, 39(2), 221–226.

Knez, M., Graham, R. D., Welch, R. M., & Stangoulis, J. C. (2017). New perspectives on the regulation of iron absorption via cellular zinc concentrations in humans. Critical Reviews in Food Science and Nutrition, 57(10), 2128–2143.

Knight, L. C., & Dilger, R. N. (2018). Longitudinal effects of iron deficiency anemia and subsequent repletion on blood parameters and the rate and composition of growth in pigs. Nutrients, 10(5), 632.

Levchenko, V., Zajarnuk, V., Papchenko, I., Abdullaev, S., Bogatko, L., Kostenko, L., Sokoluk, V., Sharandak, V., & Shulga, P. (2005). Кhvoroby svynei [Diseases of pigs]. Bilotserkivskyi Derzhavnyi Ahrarnyi Universytet, Bila Tserkva (in Ukrainian).

Leyshon, B. J., Radlowski, E. C., Mudd, A. T., Steelman, A. J., & Johnson, R. W. (2016). Postnatal iron deficiency alters brain development in piglets. The Journal of Nutrition, 146(7), 1420–1427.

Li, R., Wang, F., Zhang, Y., Li, C., Xia, C., Chen, H., Lu, X., & Liu, F. (2019). Comparison of hematologic and biochemical reference values in specific-pathogen-free 1-month-old Yorkshire pigs and Yorkshire-Landrace crossbred pigs. Canadian Journal of Veterinary Research, 83(4), 285–290.

Lipinski, P., Starzyński, R. R., Canonne-Hergaux, F., Tudek, B., Oliński, R., Kowalczyk, P., Dziaman, T., Thibaudeau, O., Gralak, M. A., Smuda, E., Woliński, J., Usińska, A., & Zabielski, R. (2010). Benefits and risks of iron supplementation in anemic neonatal pigs. The American Journal of Pathology, 177(3), 1233–1243.

Lipiński, P., Styś, A., & Starzyński, R. R. (2013). Molecular insights into the regulation of iron metabolism during the prenatal and early postnatal periods. Cellular and Molecular Life Sciences, 70(1), 23–38.

Ma, W., Lu, J., Jiang, S., Cai, D., Pan, S., Jia, Y., & Zhao, R. (2017). Maternal protein restriction depresses the duodenal expression of iron transporters and serum iron level in male weaning piglets. The British Journal of Nutrition, 117(7), 923–929.

Maes, D., Steyaert, M., Vanderhaeghe, C., López Rodríguez, A., de Jong, E., Del Pozo Sacristán, R., Vangroenweghe, F., & Dewulf, J. (2011). Comparison of oral versus parenteral iron supplementation on the health and productivity of piglets. Veterinary Record, 19, 168–188.

Meier, T., Schropp, P., Pater, C., Leoni, A., Khov-Tran, V., & Elford, P. (2011). Physicochemical and toxicological characterization of a new generic iron sucrose preparation. Arzneimittelforschung, 61(2), 112–119.

Miranda, M., & Lawson, H. (2018). Ironing out the details: Untangling dietary iron and genetic background in diabetes. Nutrients, 10(10), 1437.

Nemeth, E., & Ganz, T. (2006). Regulation of iron metabolism by hepcidin. Annual Review of Nutrition, 26, 323–342.

Peña-Rosas, J., De-Regil, L., Gomez Malave, H., Flores-Urrutia, M., & Dowswell, T. (2015). Intermittent oral iron supplementation during pregnancy. Cochrane Database System Review, 10, SD009997.

Pillay, D., Wham, C., Moyes, S., Muru-Lanning, M., The, R., & Kerse, N. (2018). Intakes, adequacy, and biomarker status of iron, folate, and vitamin B12 in māori and non-māori octogenarians: Life and living in advanced age: A cohort study in New Zealand (LiLACS NZ). Nutrients, 14, 10(8), 1090.

Sangkhae, V., & Nemeth, E. (2017). Regulation of the iron homeostatic hormone hepcidin. Advances in Nutrition, 8(1), 126–136.

Shero, N., Fiset, S., Blakley, B., Jougleux, J. L., Surette, M. E., Thabet, M., & Rioux, F. M. (2019). Impact of maternal iron deficiency on the auditory functions in the young and adult guinea pig. Nutritional Neuroscience, 22(6), 444–452.

Sjaastad, O. V., Framstad, T., & Blom, A. K. (1996). Effect of iron on erythropoietin production in anaemic piglets. Acta Veterinaria Scandinavica, 37(2), 133–138.

Starzyński, R. R., Laarakkers, C. M., Tjalsma, H., Swinkels, D. W., Pieszka, M., Styś, A., Mickiewicz, M., & Lipiński, P. (2013). Iron supplementation in suckling piglets: How to correct iron deficiency anemia without affecting plasma hepcidin levels. PloS One, 8(5), e64022.

Svoboda, M., & Drabek, J. (2005). Iron deficiency in suckling piglets: Etiology, clinical aspects and diagnosis. Folia Veterinaria, 49, 104–111.

Svoboda, M., & Pískova, K. (2018). Oral iron administration in suckling piglets – a review. Acta Veterinaria Brno, 87(1), 77–83.

Szudzik, M., Lipiński, P., Jończy, A., Mazgaj, R., Pieszka, M., Kamyczek, M., Smuda, E., & Starzyński, R. R. (2020). Long-term effect of split iron dextran/hemoglobin supplementation on erythrocyte and iron status, growth performance, carcass parameters, and meat quality of Polish large white and 990 line pigs. Biological Trace Element Research, 196(2), 472–480.

Szudzik, M., Starzyński, R. R., Jończy, A., Mazgaj, R., Lenartowicz, M., & Lipiński, P. (2018). Iron supplementation in suckling piglets: An ostensibly easy therapy of neonatal iron deficiency anemia. Pharmaceuticals, 11(4), 128.

Tomyn, S., Shylin, S., Bykov, D., Ksenofontov, V., Gumienna-Kontecka, E., Bon V., & Fritsky I. (2017). Indefinitely stable iron (IV) cage complexes formed in water by air oxidation. Nature Communications, 8, 1–8.

Walter, T., Olivares, M., Pizarro, F., & Muñoz, C. (1997). Iron, anemia, and infection. Nutrition Reviews, 55(4), 111–124.

Wang, X., Garrick, M. D., & Collins, J. F. (2019). Animal models of normal and disturbed iron and copper metabolism. The Journal of Nutrition, 149(12), 2085–2100.

How to Cite
Dukhnitsky, V. B., Derkach, I. M., Plutenko, M. O., Fritsky, I. O., & Derkach, S. S. (2020). Antianemic action of the iron (IV) clathrochelate complexes . Regulatory Mechanisms in Biosystems, 11(3), 419–424.