Influence of calcium ionophore on the fertilization of bovine oocytes and their further embryonic development

  • V. V. Kovpak National University of Life and Environmental Sciences of Ukraine
  • O. S. Kovpak Limited Liability Company “BioTexCom”
  • S. S. Derkach National University of Life and Environmental Sciences of Ukraine
  • O. A. Valchuk National University of Life and Environmental Sciences of Ukraine
  • Y. V. Zhuk National University of Life and Environmental Sciences of Ukraine
  • Y. S. Masalovych National University of Life and Environmental Sciences of Ukraine
Keywords: artificial activation of oocytes; ICSI; biotechnology of reproduction of ruminants; A213187.


Intracytoplasmic spermatozoid injection (ICSI) is one of the commonest methods used in assisted reproductive technologies in human medicine. However, this procedure has low efficacy for bovines, mainly because of insufficient activation of oocytes after spermatozoid microinjection. One of the most effective methods of activating oocytes is considered to be the use of phosphorus calcium, though the optimal concentration of activator and its effect on pre-implant development of embyo are still open questions. An oocyte-cumulus complex of clinically healthy cows, retrieved from the ovaries during slaughter, matured over 22–24 h in in vitro conditions. Oocytes with visible polar body had been subjected to intracytoplasmic spermatozoid injection (ICSI), and were 15–30 min later activated in the environment with different concentrations of calcium ionophore for 15–20 min and then transferred for further cultivation in a culture medium with sodium pyruvate. The fertilization rate was identified on the second day at the 2–4th stages of cellular embryo, and the quality of obtained embyos was evaluated on day 8. Based on the statistical analysis of the data, we determined that the artificial activation of bovine oocytes using calcium ionphore after intracytoplasmic spermatozoid injection (ICSI) led to statistically significant improvement in conception and ratio of blastocytes obtained to oocytes injected. In the study, we confirmed that addition of 5, 10 and 50 µМ of the agent had the same efficacy on the activation of occytes of bovine cattle. However, it has to be noted that during further cultivation of the obtained zygotes up to the blastocyte stage (day 8), we saw no significant differences in quality of embryos obtained. Therefore, use of calcium ionophore for the activation of bovine oocytes after intracytoplasmic spermatozoid injection is effective, for it promotes increase in fertilization parameters and ratio of blastocytes obtained to oocytes injected, facilitating production of higher numbers of embyos suitable for transplantation or cooling. Our previous conclusions are valuable for increasing the efficacy of methods of intracytoplasmic injection of bovine spermatozoid and its further use for purposes of science and production.


Acar, D. B., & Bastan, A. (2011). Activation of bovine oocytes following ICSI and effect of activation on embryo according to developmental stages. Kafkas Universitesi Veteriner Fakultesi Dergisi, 17, 631–634.

Alberio, R., Zakhartchenko, V., Motlik, J., & Wolf, E. (2001). Mammalian oocyte activation: Lessons from the sperm and implications for nuclear transfer. The International Journal of Developmental Biology, 45(7), 797–809.

Arias, M. E, Risopatrón, J., Sánchez, R., & Felmer, R. (2015). Intracytoplasmic sperm injection affects embryo developmental potential and gene expression in cattle. Reproductive Biology, 15(1), 34–41.

Ashibe, S., Miyamoto, R., Kato, Y., & Nagao, Y. (2019). Detrimental effects of oxidative stress in bovine oocytes during intracytoplasmic sperm injection (ICSI). Theriogenology, 133, 71–78.

Báez, F., Gómez, B., de Brun, V., Rodríguez-Osorio, N., & Viñoles, C. (2021). Effect of ethanol on parthenogenetic activation and α-tocopherol supplementation during in vitro maturation on developmental competence of summer-collected bovine oocytes. Current Issues in Molecular Biology, 43(3), 2253–2265.

Bó, G., & Mapletoft, R. (2013) Evaluation and classification of bovine embryos. Animal Reproduction, 54, 344–348.

Briski, O., & Salamone, D. F. (2022). Past, present and future of ICSI in livestock species. Animal Reproduction Science, 246, 106925.

Capalbo, A., Ottolini, C. S., Griffin, D. K., Ubaldi, F. M., Handyside, A. H., & Rienzi, L. (2016). Artificial oocyte activation with calcium ionophore does not cause a widespread increase in chromosome segregation errors in the second meiotic division of the oocyte. Fertility and Sterility, 105(3), 807–814.

Catt, J. W., & Rhodes, S. L. (1995). Comparative intracytoplasmic sperm injection (ICSI) in human and domestic species. Reproduction, Fertility and Development, 7(2), 161–166.

Chen, S. H., & Seidel Jr., G. E. (1997). Effects of oocyte activation and treatment of spermatozoa on embryonic development following intracytoplasmic sperm injection in cattle. Theriogenology, 48(8), 1265–1273.

Chung, J. T., Keefer, C. L., & Downey, B. R. (2000). Activation of bovine oocytes following intracytoplasmic sperm injection (ICSI). Theriogenology, 53(6), 1273–1284.

Cochran, R., Meintjes, M., Reggio, B., Hylan, D., Carter, J., Pinto, C., Paccamonti, D., & Godke, R. A. (1998). Live foals produced from sperm-injected oocytes derived from pregnant mares. Journal of Equine Veterinary Science, 18(11), 736–740.

Cuthbertson, K. S., & Cobbold, P. H. (1985). Phorbol ester and sperm activate mouse oocytes by inducing sustained oscillations in cell Ca2+. Nature, 316(6028), 541–542.

de Castro, P., Vendrell, X., Escrich, L., Grau, N., Gonzalez-Martin, R., Quiñonero, A., Dominguez, F., & Escribá, M. J. (2022). Comparative single-cell transcriptomic profiles of human androgenotes and parthenogenotes during early development. Fertility and Sterility, 12, 27.

De Sutter, Р., Dozortsev, D., Cieslak, J., Wolf, G., Verlinsky, Y., & Dyban, A. (1992). Parthenogenetic activation of human oocytes by puromycin. Journal of Assisted Reproduction and Genetics, 9(4), 328–337.

Dirican, E. K., Isik, A., Vicdan, K., Sozen, E., & Suludere, Z. (2008). Clinical pregnancies and livebirths achieved by intracytoplasmic injection of round headed acrosomeless spermatozoa with and without oocyte activation in familial globozoospermia: Case report. Asian Journal of Andrology, 10(2), 332–336.

Dochi, O. (2019). Direct transfer of frozen-thawed bovine embryos and its application in cattle reproduction management. The Journal of Reproduction and Development, 65(5), 389–396.

Dozortsev, D., Qian, C., Ermilov, A., Rybouchkin, A., De Sutter, P., & Dhont, M. (1997). Sperm-associated oocyte-activating factor is released from the spermatozoon within 30 minutes after injection as a result of the sperm-oocyte interaction. Human Reproduction, 12(12), 2792–2796.

Ducibella, T., & Fissore, R. (2008). The roles of Ca2+, downstream protein kinases, and oscillatory signaling in regulating fertilization and the activation of development. Developmental Biology, 315(2), 257–279.

Ducibella, T., Huneau, D., Angelichio, E., Xu, Z., Schultz, R. M., Kopf, G. S., Fissore, R., Madoux, S., & Ozil, J. P. (2002). Egg-to-embryo transition is driven by differential responses to Ca2+ oscillation number. Developmental Biology, 250(2), 280–291.

Elfeel, A., Husyatinska, O., & Susol, R. (2022). Current state and prospects of the development of the dairy industry [Current state and development prospects of the dairy cattle breeding industry in Ukraine]. Agrarian Bulletin of the Black Sea Littoral, 104, 118–129 (in Ukrainian).

Fawzy, M., Emad, M., Mahran, A., Sabry, M., Fetih, A. N., Abdelghafar, H., & Rasheed S. (2018). Artificial oocyte activation with SrCl2 or calcimycin after ICSI improves clinical and embryological outcomes compared with ICSI alone: Results of a randomized clinical trial. Human Reproduction, 33(9), 1636–1644.

Ferré, L. B., Kjelland, M. E., Strøbech, L. B., Hyttel, P., Mermillod, P., & Ross, P. J. (2020). Review: Recent advances in bovine in vitro embryo production: Reproductive biotechnology history and methods. Animal, 14(5), 991–1004.

Ferrer-Buitrago, M., Bonte, D., De Sutter, P., Leybaert, L., & Heindryckx, B. (2018). Single Ca2+ transients vs oscillatory Ca2+ signaling for assisted oocyte activation: Limitations and benefits. Reproduction, 155(2), R105–R119.

Fuentes, F., Muñoz, E., Contreras, M., Arias, M., & Felmer, R. (2022). Bovine ICSI: Limiting factors, strategies to improve its efficiency and alternative approaches. Zygote, 30(6), 749–767.

Fujinami, N., Hosoi, Y., Kato, H., Matsumoto, K., Saeki, K., & Iritani, A. (2004). Activation with ethanol improves embryo development of ICSI-derived oocytes by regulation of kinetics of MPF activity. Journal of Reproduction and Development, 50(2), 171–178.

Goto, K., Kinoshita, A., Takuma, Y., & Ogawa, K. (1990). Fertilisation of bovine oocytes by the injection of immobilised, killed spermatozoa. Veterinary Record, 127(21), 517–520.

Haddad, M., Stewart, J., Xie, P., Cheung, S., Trout, A., Keating, D., Parrella, A., Lawrence, S., Rosenwaks, Z., & Palermo, G. D. (2021). Thoughts on the popularity of ICSI. Journal of Assisted Reproduction and Genetics, 38(1), 101–123.

Hasler, J. F., Bilby, C. R., Collier, R. J., Denham, S. C., & Lucy, M. C. (2003). Effect of recombinant bovine somatotropin on superovulatory response and recipient pregnancy rates in a commercial embryo transfer program. Theriogenology, 59, 1919–1928.

Herrero, M., Grace, D., Njuki, J., Johnson, N., Enahoro, D., Silvestri, S., & Rufino, M. C. (2013). The roles of livestock in developing countries. Animal, 1, 3–18.

Hladiy, M. R., & Prosovych, O. Р. (2022). Suchasnyy stan ta perspektyvy rozvytku molochnoyi promyslovosti Ukrayiny [Current state and prospect development of the dairy industry in Ukraine]. Bulletin of Lviv Polytechnic National University, 6(2), 20–31 (in Ukrainian).

Horiuch, T., Emuta, C., Yamauchi, Y., Oikawa, T., Numabe, T., & Yanagimachi, R. (2002). Birth of normal calves after intracytoplasmic sperm injection of bovine oocytes: A methodological approach. Theriogenology, 57(3), 1013–1024.

Hosoi, Y., & Iritani, A. (1993). Rabbit microfertilization. Molecular Reproduction and Development, 36(2), 282–284.

Hosseini, S. M., Hajian, M., Moulavi, F., Shahverdi, A. H., & Nasr-Esfahani, M. H. (2008). Optimized combined electrical-chemical parthenogenetic activation for in vitro matured bovine oocytes. Animal Reproduction Science, 108, 122–133.

Hwang, S., Lee, E., Yoon, J., Yoon, B. K., Lee, J. H., & Choi, D. (2000). Effects of electric stimulation on bovine oocyte activation and embryo development in intracytoplasmic sperm injection procedure. Journal of Assisted Reproduction and Genetics, 17(6), 310–314.

Jagtap, S., Trollman, H., Trollman, F., Garcia-Garcia, G., Parra-López, C., Duong, L., Martindale, W., Munekata, P. E. S., Lorenzo, J. M., Hdaifeh, A., Hassoun, A., Salonitis, K., & Afy-Shararah, M. (2022). The Russia-Ukraine conflict: Its implications for the global food supply chains. Foods, 11(14), 2098.

Jia, L., Chen, P., Su, W., He, S., Guo, Y., Zheng, L., Fang, C., & Liang, X. (2023). Artificial oocyte activation with ionomycin compared with A23187 among patients at risk of failed or impaired fertilization. Reproductive BioMedicine Online, 46(1), 35–45.

Kashir, J., Heindryckx, B., Jones, C., De Sutter, P., Parrington, J., & Coward, K. (2010). Oocyte activation, phospholipase C zeta and human infertility. Human Reproduction Update, 16(6), 690–703.

Katayose, H., Yanagida, K., Shinoki, T., Kawahara, T., Horiuchi, T., & Sato, A. (1999). Efficient injection of bull spermatozoa into oocytes using a piezo-driven pipette. Theriogenology, 52(7), 1215–1224.

Kawamura, T. (1939). Artificial parthenogenesis in the frog. I. Chromosome numbers and their relation to cleavage histories. Journal of Science of the Hiroshima University, B(1.6), 116–218.

Keefer, C. L., Younis, A. I., & Brackett, B. G. (1990). Cleavage development of bovine oocytes fertilized by sperm injection. Molecular Reproduction and Development, 25(3), 281–285.

Keskintepe, L., Morton, P., Smith, S., Tucker, M., Simplicio, A., & Brackett, B. (1997). Caprine blastocyst development after intracytoplasmic sperm injection (ICSI). Theriogenology, 47, 249–249.

Kim, J. W., Kim, S. D., Yang, S. H., Yoon, S. H., Jung, J. H., & Lim, J. H. (2014). Successful pregnancy after SrCl2 oocyte activation in couples with repeated low fertilization rates following calcium ionophore treatment. Systems Biology in Reproductive Medicine, 60(3), 177–182.

Kimura, Y., & Yanagimachi, R. (1995). Intracytoplasmic sperm injection in the mouse. Biology of Reproduction, 52(4), 709–720.

Kovpak, V. V., Kovpak, O. S., Valchuk, O. A., Zhuk, Y. V., & Derkach, S. S. (2022). Specifics of vitrification of in vitro-produced cattle embyos at various development stages. Regulatory Mechanisms in Biosystems, 13(3), 265–271.

Kovpak, V., Kovpak, O., Babii, Y., Derkach, S., & Masalovych, Y. (2022). Influence of different environments on oocyte maturation and development of bovine embryos in vitro. Ukrainian Journal of Veterinary Sciences, 13(3), 17–24.

Kovpak, V., Kovpak, O., Derkach, S., Masalovych, Y., & Babiі, Y. (2022). The influence of platelet concentrate on the development of cattle embryos in аn in vitro system. Scientific Horizons, 25(9), 9–18.

Kumbha, R., Hosny, N., Matson, A., Steinhoff, M., Hering, B. J., & Burlak, C. (2020). Efficient production of GGTA1 knockout porcine embryos using a modified handmade cloning (HMC) method. Research in Veterinary Science, 128, 5968.

Lanzendorf, S. E., Maloney, M. K., Veeck, L. L., Slusser, J., Hodgen, G. D., & Rosenwaks, Z. (1988). A preclinical evaluation of pronuclear formation by microinjection of human spermatozoa into human oocytes. Fertility and Sterility, 49(5), 835–842.

Lawrence, Y., Whitaker, M., & Swann, K. (1997). Sperm-egg fusion is the prelude to the initial Ca2+ increase at fertilization in the mouse. Development, 124(1), 233–241.

Loeb, J. (1899). On the nature of the process of fertilization and the artificial production of normal larvae (Plutei) from the unfertilized eggs of the sea urchin. American Physiological Society Journal, 3, 135–138.

López-Saucedo, J., Paramio-Nieto, M. T., Fierro, R., & Piña-Aguilar, R. E. (2012). Intracytoplasmic sperm injection (ICSI) in small ruminants. Animal Reproduction Science, 133(3–4), 129–138.

Marangos, P., FitzHarris, G., & Carroll, J. (2003). Ca2+ oscillations at fertilization in mammals are regulated by the formation of pronuclei. Development, 130(7), 1461–1472.

Mateizel, I., Verheyen, G., Van de Velde, H., Tournaye, H., & Belva, F. (2018). Obstetric and neonatal outcome following ICSI with assisted oocyte activation by calcium ionophore treatment. Journal of Assisted Reproduction and Genetics, 35, 1005–1010.

Méo, S. C., Yamazaki, W., Ferreira, C. R., Perecin, F., Saraiva, N. Z., Leal, C. L. V., & Garcia, J. M. (2007). Parthenogenetic activation of bovine oocytes using single and combined strontium, ionomycin and 6-dimethylaminopurine treatments. Zygote, 15(4), 295–306.

Miller, N., Biron-Shental, T., Sukenik-Halevy, R., Klement, A. H., Sharony, R., & Berkovitz, A. (2016). Oocyte activation by calcium ionophore and congenital birth defects: A retrospective cohort study. Fertility and Sterility, 106(3), 590–596.

Miyazaki, S., & Ito, M. (2006). Calcium signals for egg activation in mammals. Journal of Pharmacological Sciences, 100(5), 545–552.

Morris, L. H. A. (2018). The development of in vitro embryo production in the horse. Equine Veterinary Journal, 50(6), 712–720.

Murugesu, S., Saso, S., Jones, B. P., Bracewell-Milnes, T., Athanasiou, T., Mania, A., Serhal, P., & Ben-Nagi, J. (2017). Does the use of calcium ionophore during artificial oocyte activation demonstrate an effect on pregnancy rate? A meta-analysis. Fertility and Sterility, 108(3), 468–482.

Nakada, K., Mizuno, J., Shiraishi, K., Endo, K., & Miyazaki, S. (1995). Initiation, persistence, and cessation of the series of intracellular Ca2+ responses during fertilization of bovine eggs. Journal of Reproduction and Development, 41(1), 77–84.

Nakano, Y., Shirakawa, H., Mitsuhashi, N., Kuwabara, Y., & Miyazaki, S. (1997). Spatiotemporal dynamics of intracellular calcium in the mouse egg injected with a spermatozoon. Molecular Human Reproduction, 3(12), 1087–1093.

Nasr-Esfahani, M. H., Deemeh, M. R., & Tavalaee, M. (2010). Artificial oocyte activation and intracytoplasmic sperm injection. Fertility and Sterility, 94(2), 520–526.

Ohlweiler, L. U., Brum, D. S., Leivas, F. G., Moyses, A. B., Ramos, R. S., Klein, N., Mezzalira, J. C., & Mezzalira, A. (2013). Intracytoplasmic sperm injection improves in vitro embryo production from poor quality bovine oocytes. Theriogenology, 79(5), 778–783.

Ozil, J. P. (1990). The parthenogenetic development of rabbit oocytes after repetitive pulsatile electrical stimulation. Development 109, 117–127.

Ozil, J. P., & Huneau, D. (2001). Activation of rabbit oocytes: The impact of the Ca2+ signal regime on development. Development, 128(6), 917–928.

Parrington, J., Davis, L. C., Galione, A., & Wessel, G. (2007). Flipping the switch: How a sperm activates the egg at fertilization. Developmental Dynamics, 236(8), 2027–2038.

Parrish, J. J., Susko-Parrish, J. L., Leibfried-Rutledge, M. L., Critser, E. S., Eyestone, W. H., & First, N. L. (1986). Bovine in vitro fertilization with frozen-thawed semen. Theriogenology, 25(4), 591–600.

Rho, G.-J., Kawarsky, S., Johnson, W. H., Kochhar, K., & Betteridge, K. J. (1998). Sperm and oocyte treatments to improve the formation of male and female pronuclei and subsequent development following intracytoplasmic sperm injection into bovine oocytes. Biology of Reproduction, 59(4), 918–924.

Ridgway, E. B., Gilkey, J. C., & Jaffe, L. F. (1977). Free calcium increases explosively in activating medaka eggs. Proceedings of the National Academy of Sciences, 74(2), 623–627.

Rocha, J. C., Passalia, F., Matos, F. D., Maserati Jr., M. P., Alves, M. F., Almeida, T. G., Cardoso, B. L., Basso, A. C., & Nogueira, M. F. (2016). Methods for assessing the quality of mammalian embryos: How far we are from the gold standard? JBRA Assisted Reproduction, 20(3), 150–158.

Steinhardt, R. A., & Epel, D. (1974). Activation of sea-urchin eggs by a calcium ionophore. Proceedings of the National Academy of Sciences, 71(5), 1915–1919.

Steinhardt, R. A., Epel, D., Carroll, E. J., & Yanagimachi, R. (1974). Is calcium ionophore a universal activator for unfertilised eggs? Nature, 252(5478), 41–43.

Stricker, S. A. (1999). Comparative biology of calcium signaling during fertilization and egg activation in animals. Developmental Biology, 211(2), 157–176.

Suprun, I., & Dovha, O. (2021). Dynamika pleminnoho m’yasnoho skotarstva v Ukrayini [Development of beef cattle breeding status in Ukraine]. Bulletin of the Sumy National Agrarian University, 1, 92–97 (in Ukrainian).

Suttner, R., Zakhartchenko, V., Stojkovic, P., Müller, S., Alberio, R., Medjugorac, I., Brem, G., Wolf, E., & Stojkovic, M. (2000). Intracytoplasmic sperm injection in bovine: Effects of oocyte activation, sperm pretreatment and injection technique. Theriogenology, 54(6), 935–948.

Tesarik, J., Mendoza, C., & Greco, E. (2000). The activity (calcium oscillator?) responsible for human oocyte activation after injection with round spermatids is associated with spermatid nuclei. Fertility and Sterility, 74(6), 1245–1247.

Tian, T., Chen, L., Yang, R., Long, X., Li, Q., Hao, Y., Kong, F., Li, R., Wang, Y., & Qiao, J. (2022). Prediction of fertilization disorders in the in vitro fertilization/ intracytoplasmic sperm injection: A retrospective study of 106,728 treatment cycles. Frontiers in Endocrinology, 13, 870708.

Travnickova, I., Hulinska, P., Kubickova, S., Hanzalova, K., Kempisty, B., Nemcova, L., & Machatkova, M. (2021). Production of sexed bovine embryos in vitro can be improved by selection of sperm treatment and co-culture system. Reproduction in Domestic Animals, 56(6), 864–871.

Uehara, T., & Yanagimachi, R. (1976). Microsurgical injection of spermatozoa into hamster eggs with subsequent transformation of sperm nuclei into male pronuclei. Biology of Reproduction, 15(4), 467–470.

Unnikrishnan, V., Kastelic, J., & Thundathil, J. (2021). Intracytoplasmic sperm injecttion in cattle. Genes, 12(2), 198.

Valencia, C., Pérez, F. A., Matus, C., Felmer, R., & Arias, M. E. (2021). Activation of bovine oocytes by protein synthesis inhibitors: New findings on the role of MPF/MAPKs. Biology of Reproduction, 104(5), 1126–1138.

Viana, J. (2020). 2019 statistics of embryo production and transfer in domestic farm animals: Divergent trends for IVD and IVP embryos. Embryo Technology Newsl, 4, 7–26.

Vichera, G., Alfonso, J., Duque, C. C., Silvestre, M. A., Pereyra-Bonnet, F., Fernández-Martín, R., & Salamone, D. (2010). Chemical activation with a combination of ionomycin and dehydroleucodine for production of parthenogenetic, ICSI and cloned bovine embryos. Reproduction in Domestic Animals, 45(6), e306–e312.

Wang, Z. G., Wang, W., Yu, S. D., & Xu, Z. R. (2008). Effects of different activation protocols on preimplantation development, apoptosis and ploidy of bovine parthenogenetic embryos. Animal Reproduction Science, 105, 292–301.

Whitaker, M. (2006). Calcium microdomains and cell cycle control. Cell Calcium, 40, 585–592.

Whitaker, M. J., & Steinhardt, R. A. (1982). Ionic regulation of egg activation. Quarterly Reviews of Biophysics, 15(4), 593–666.

Whitaker, M., & Patel, R. (1990). Calcium and cell cycle control. Development, 108(4), 525–542.

Wong, J. L., & Wessel, G. M. (2005). Defending the zygote: Search for the ancestral animal block to polyspermy. Current Topics in Developmental Biology, 72, 1–151.

Xu, Z., Yao, G., Niu, W., Fan, H., Ma, X., Shi, S., Jin, H., Song, W., & Sun, Y. (2021). Calcium ionophore (A23187) rescues the activation of unfertilized oocytes after intracytoplasmic sperm injection and chromosome analysis of blastocyst after activation. Frontiers in Endocrinology, 12, 692082.

Yanagida, K., Katayose, H., Hirata, S., Yazawa, H., Hayashi, S., & Sato, A. (2001). Influence of sperm immobilization on onset of Ca2+ oscillations after ICSI. Human Reproduction, 16(1), 148–152.

Yang, R., Sun, H. H., Ji, C. L., Zhang, J., Yuan, H. J., Luo, M. J., Liu, X. Y., & Tan, J. H. (2018). Role of calcium-sensing receptor in regulating spontaneous activation of postovulatory aging rat oocytes. Biology of Reproduction, 98(2), 218–226.

Zhang, J., Yao, G., Zhang, T., Hu, J., Yang, G., He, J., He, Q., Fan, H., Bai, Y., & Sun, Y. (2023). Effect of calcium ionophore (A23187) on embryo development and its safety in PGT cycles. Frontiers in Endocrinology, 13, 979248.

Zhao, M. H., Kwon, J. W., Liang, S., Kim, S. H., Li, Y. H., Oh, J. S., Kim, N. H., & Cui, X. S. (2014). Zinc regulates meiotic resumption in porcine oocytes via a protein kinase C-related pathway. PLoS One, 9(7), e102097.

How to Cite
Kovpak, V. V., Kovpak, O. S., Derkach, S. S., Valchuk, O. A., Zhuk, Y. V., & Masalovych, Y. S. (2023). Influence of calcium ionophore on the fertilization of bovine oocytes and their further embryonic development . Regulatory Mechanisms in Biosystems, 14(1), 137-144.