Influence of melatonin on the kidneys of rats with experimental diabetes mellitus type 2

  • A. V. Semenko Oles Honchar Dnipro National University
  • Y. V. Murdasov Oles Honchar Dnipro National University
  • S. V. Kirichenko Oles Honchar Dnipro National University
  • V. I. Zhyliuk Dnipropetrovsk Medical Academy of the Ministry of Health of Ukraine
  • G. A. Ushakovа Oles Honchar Dnipro National University
Keywords: hyperglycemia; oxidative stress; antioxidants; high-molecular-weight proteins; potassium;chlorine.


Diabetes mellitus is characterized by numerous pathological changes in the body. Under conditions of diabetes, hyperglycemic intoxication of the organism rapidly develops, which in turn leads to an increase of oxidative stress with subsequent disturbance of the anatomical and functional integrity of the components of organisms. Today, the search for the substances that would contribute to the multi-vectoral effect on the negative consequences of diabetes is actively being pursued. Melatonin is one of such substances. In this work, we studied the effect of melatonin on oxidative stress markers (oxidized products content, activities of superoxide dismutase and catalase), the concentration of metabolism end products (creatinine and urea), main ions concentration (potassium and chlorine), and protein content (total protein and electropherogram in polyacrylamide gel), enzymatic activity of gamma-glutamyltrasferase in the cytosolic fraction of rat kidneys under condition of type 2 diabetes mellitus (EDM2). Experimental studies were performed on 18 white adult Wistar rats divided into three groups (control, group with EDM2 and group with EDM2, which were treated with melatonin). The increase of concentration of oxidized products, the activity of catalase and gamma-glutamyltrasferase, creatinine, urea, K+ and Cl– and the decrease of concentration of superoxide dismutase in the rats’ kidneys was noted after development of EDM2. The electrophoretic proteinogram of the cytosolic proteins obtained from the rats’ kidneys showed an increase of content of high-molecular-weight and a decrease of low-molecular-weight proteins. Administration of melatonin in a dose of 10 mg/kg of body weight for 7 days after development of EDM2 restored the studied parameters almost to the control group values. Therefore, the influence of melatonin can prevent chronic development of oxidative stress in kidneys under hyperglycemic intoxication, and lead to normalization of kidney function and the restoration of homeostasis.


Agil, A., Elmahallawy, E. K., Rodríguez-Ferrer, J. M., Adem, A., Bastaki, S. M., Al-Abbadi, I., Fino Solano, Y. A., & Navarro-Alarcón, M. (2015). Melatonin increases intracellular calcium in the liver, muscle, white adipose tissues and pancreas of diabetic obese rats. Food and Function, 6(8), 2671–2678.

Ahmadvand, H., Ghasemi Dehnoo, M., Cheraghi, R., Rasoulian, B., Ezatpour, B., Azadpour, M., & Baharvand, K. (2014). Amelioration of altered serum, liver, and kidney antioxidant enzymes activities by sodium selenite in alloxan-induced diabetic rats. Reports of Biochemistry and Molecular Biology, 3(1), 14–20.

Alqasim, A. A., Noureldin, E., Hammadi, S. H., & Esheba, G. E. (2017). Effect of melatonin versus vitamin D as antioxidant and Hepatoprotective agents in STZ-induced diabetic rats. Journal of Diabetes and Metabolic Disorders, 16, 41.

Andreeva, L. Y., Kozhemiakyn, L. A., & Kyshkun, A. A. (1988). Modyfykacyja metoda opredelenyja perekysej lypydov v teste s tyobarbyturovoj kyslotoj [Modification of the method of determining lipid peroxidation in a test using thiobarbituric acid]. Laboratornoe Delo, 11, 41–43 (in Russian).

Avelar, T. M. T., Storch, A. S., Castro, L. A., Azevedo, G. V. M. M., Ferraz, L., & Lopes, P. F. (2015). Oxidative stress in the pathophysiology of metabolic syndrome: Which mechanisms are involved? Jornal Brasileiro de Patologia e Medicina Laboratorial, 51(4), 231–239.

Bandeira, S., Guedes, G., da Fonseca, L. J., Pires, A. S., Gelain, D. P., Moreira, J. C., Rabelo, L. A., Vasconcelos, S. M. L., & Goulart, M. O. (2012). Characterization of blood oxidative stress in type 2 diabetes mellitus patients: Increase in lipid peroxidation and SOD activity. Oxidative Medicine and Cellular Longevity, 2012, 819310.

Barbieri, J., Fontela, P. C., Winkelmann, E. R., Zimmermann, C. E., Sandri, Y. P., Mallet, E. K., & Frizzo, M. N. (2015). Anemia in patients with type 2 diabetes mellitus. Anemia, 2015, 354737.

Bharti, V. K., Srivastava, R. S., Kumar, H., Bag, S., Majumdar, A. C., Singh, G., Pandi-Perumal, S. R., & Brown, G. M. (2014). Effects of melatonin and epiphyseal proteins on fluoride-induced adverse changes in antioxidant status of heart, liver, and kidney of rats. Advances in Pharmacological Sciences, 2014, 532969.

Bispo, J. A., de Sousa Vieira, E. E., Silveira Jr., L., & Fernandes, A. B. (2013). Correlating the amount of urea, creatinine, and glucose in urine from patients with diabetes mellitus and hypertension with the risk of developing renal lesions by means of Raman spectroscopy and principal component analysis. Journal of Biomedical Optics, 18(8), 87004.

Bradford, M. (1985). Rapid and sensitive methods for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

Cai, Z., & Yan, L. J. (2013). Protein oxidative modifications: beneficial roles in disease and health. Journal of Biochemical and Pharmacological Research, 1(1), 15–26.

Carija, A., Navarro, S., de Groot, N. S., & Ventura, S. (2017). Protein aggregation into insoluble deposits protects from oxidative stress. Redox Biology, 12, 699–711.

Chatuphonprasert, W., Lao-Ong, T., & Jarukamjorn, K. (2014). Improvement of superoxide dismutase and catalase in streptozotocin-nicotinamide-induced type 2 diabetes in mice by berberine and glibenclamide. Pharmaceutical Biology, 52(4), 419–427.

Chatziralli, I. P., Theodossiadis, G., Dimitriadis, P., Charalambidis, M., Agorastos, A., Migkos, Z., Platogiannis, N., Moschos, M. M., Theodossiadis, P., & Keryttopoulos, P. (2017). The effect of vitamin E on oxidative stress indicated by serum malondialdehyde in insulin-dependent type 2 diabetes mellitus patients with retinopathy. The Open Ophthalmology Journal, 11, 51–58.

Chen, C. M., Juan, S. H., & Chou, H. C. (2018). Hyperglycemia activates the renin-angiotensin system and induces epithelial-mesenchymal transition in streptozotocin-induced diabetic kidneys. Journal of the Renin-Angiotensin-Aldosterone System, 19(3), 1470320318803009.

Ciarimboli, G., Lancaster, C. S., Schlatter, E., Franke, R. M., Sprowl, J. A., Pavenstädt, H., Massmann, V., Guckel, D., Mathijssen, R. H. J., Yang, W., Pui, C.-H., Relling, M. V., Herrmann, E., & Sparreboom, A. (2012). Proximal tubular secretion of creatinine by organic cation transporter OCT2 in cancer patients. Clinical Cancer Research, 18(4), 1101–1108.

Comai, S., & Gobbi, G. (2014). Unveiling the role of melatonin MT2 receptors in sleep, anxiety and other neuropsychiatric diseases: a novel target in psychopharmacology. Journal of Psychiatry and Neuroscience, 39(1), 6–21.

Costes, S., Boss, M., Thomas, A. P., & Matveyenko, A. V. (2015). Activation of melatonin signaling promotes β-cell survival and function. Molecular Endocrinology, 29(5), 682–692.

Dludla, P. V., Joubert, E., Muller, C., Louw, J., & Johnson, R. (2017). Hyperglycemia-induced oxidative stress and heart disease-cardioprotective effects of rooibos flavonoids and phenylpyruvic acid-2-O-β-D-glucoside. Nutrition and Metabolism, 14, 45.

Erejuwa, O. O., Sulaiman, S. A., Wahab, M. S., Salam, S. K., Salleh, M. S., & Gurtu, S. (2011). Comparison of antioxidant effects of honey, glibenclamide, metformin, and their combinations in the kidneys of streptozotocin-induced diabetic rats. International Journal of Molecular Sciences, 12(1), 829–843.

Faria, J. A., Kinote, A., Ignacio-Souza, L. M., de Araújo, T. M., Razolli, D. S., Doneda, D. L., Paschoal, L. B., Lellis-Santos, C., Bertolini, G. L., Velloso, L. A., Bordin, S., & Anhê, G. F. (2013). Melatonin acts through MT1/MT2 receptors to activate hypothalamic akt and suppress hepatic gluconeogenesis in rats. American Journal of Physiology, Endocrinology and Metabolism, 305(2), e230–e242.

Fujita, H., Fujishima, H., Chida, S., Takahashi, K., Qi, Z., Kanetsuna, Y., Breyer, M. D., Harris, R. C., Yamada, Y., & Takahashi, T. (2009). Reduction of renal superoxide dismutase in progressive diabetic nephropathy. Journal of the American Society of Nephrology, 20(6), 1303–1313.

Galano, A., Tan, D. X., & Reiter, R. J. (2013). On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. Journal of Pineal Research, 54(3), 245–257.

Galano, A., Tan, D. X., & Reiter, R. J. (2018). Melatonin: A versatile protector against oxidative DNA damage. Molecules, 23(3), 530.

García-García, P. M., Getino-Melián, M. A., Domínguez-Pimentel, V., & Navarro-González, J. F. (2014). Inflammation in diabetic kidney disease. World Journal of Diabetes, 5(4), 431–443.

Ghasemi, H., Einollahi, B., Kheiripour, N., Hosseini-Zijoud, S. R., & Farhadian Nezhad, M. (2019). Protective effects of curcumin on diabetic nephropathy via attenuation of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) expression and alleviation of oxidative stress in rats with type 1 diabetes. Iranian Journal of Basic Medical Sciences, 22(4), 376–383.

Gomathi, D., Kalaiselvi, M., Ravikumar, G., Devaki, K., & Uma, C. (2014). Evaluation of antioxidants in the kidney of streptozotocin induced diabetic rats. Indian Journal of Clinical Biochemistry, 29(2), 221–226.

Hardeland, R. (2005). Antioxidative protection by melatonin: Multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine, 27(2), 119–130.

Jung, H., Kim, Y. Y., Kim, B., Nam, H., & Suh, J. G. (2017). Improving glycemic control in model mice with type 2 diabetes by increasing superoxide dismutase (SOD) activity using silk fibroin hydrolysate (SFH). Biochemical and Biophysical Research Communications, 493(1), 115–119.

Karamitri, A., Renault, N., Clement, N., Guillaume, J. L., & Jockers, R. (2013). Minireview: Toward the establishment of a link between melatonin and glucose homeostasis: Association of melatonin MT2 receptor variants with type 2 diabetes. Molecular Endocrinology, 27(8), 1217–1233.

Khaldy, H., Escames, G., León, J., Vives, F., Luna, J. D., & Acuña-Castroviejo, D. (2000). Comparative effects of melatonin, L-deprenyl, Trolox and ascorbate in the suppression of hydroxyl radical formation during dopamine autoxidation in vitro. Journal of Pineal Research, 29(2), 100–107.

Klein, J. D., Blount, M. A., & Sands, J. M. (2012). Molecular mechanisms of urea transport in health and disease. Pflugers Archiv – European Journal of Physiology, 464(6), 561–572.

Koroljuk, M. A., Yvanova, L. Y., Majorova, Y. G., & Tokareva, V. E. (1988). Metod opredelenyja aktyvnosty katalazy [Method for the determination of catalase activity]. Laboratornoe Delo, 1, 16–19 (in Russian).

Kostjuk, V. A., Potapovych, A. Y., & Kovaleva, Z. V. (1990). Prostoj i chuvstvitel’nyj metod opredelenija aktivnosti uperoksiddismutazy, osnovannyj na reakcii okislenija kvercetina [A simple and sensitive method for determining the activity of superoxide dismutase, based on the oxidation reaction of quercetin]. Questions of Medical Chemistry, 36, 2, 88–91 (in Russian).

Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

Lanaspa, M. A., Ishimoto, T., Cicerchi, C., Tamura, Y., Roncal-Jimenez, C. A., Chen, W., Tanabe, K., Andres-Hernando, A., Orlicky, D. J., Finol, E., Inaba, S., Li, N., Rivard, C. J., Kosugi, T., Sanchez-Lozada, L. G., Petrash, M., Sautin, Y. Y., Ejaz, A. A., Kitagawa, W., Garcia, G. E., Bonthron, D. T., Asipu, A., Diggle, C. P., Rodriguez-Iturbe, B., Nakagawa, T., & Johnson, R. J. (2014). Endogenous fructose production and fructokinase activation mediate renal injury in diabetic nephropathy. Journal of the American Society of Nephrology, 25(11), 2526–2538.

Lawson, T. B., Scott-Drechsel, D. E., Chivukula, V. K., Rugonyi, S., Thornburg, K. L., & Hinds, M. T. (2018). Hyperglycemia alters the structure and hemodynamics of the developing embryonic heart. Journal of Cardiovascular Development and Disease, 5(1), 13.

Mahmoodnia, L., Aghadavod, E., Beigrezaei, S., & Rafieian-Kopaei, M. (2017). An update on diabetic kidney disease, oxidative stress and antioxidant agents. Journal of Renal Injury Prevention, 6(2), 153–157.

Mahmoudabadi, M. M., & Rahbar, A. R. (2014). Effect of EPA and vitamin C on superoxide dismutase, glutathione peroxidase, total antioxidant capacity and malondialdehyde in type 2 diabetic patients. Oman Medical Journal, 29(1), 39–45.

Meng, X., Li, Y., Li, S., Zhou, Y., Gan, R. Y., Xu, D. P., & Li, H. B. (2017). Dietary sources and bioactivities of melatonin. Nutrients, 9(4), 367.

Michishita, R., Matsuda, T., Kawakami, S., Tanaka, S., Kiyonaga, A., Tanaka, H., Morito, N., & Higaki, Y. (2017). Hypertension and hyperglycemia and the combination thereof enhances the incidence of chronic kidney disease (CKD) in middle-aged and older males. Clinical and Experimental Hypertension, 39(7), 645–654.

Montilla, P., Cruz, A., Padillo, F. J., Túnez, I., Gascon, F., Muñoz, M. C., Gómez, M., & Pera, C. (2001). Melatonin versus vitamin E as protective treatment against oxidative stress after extra-hepatic bile duct ligation in rats. Journal of Pineal Research, 31(2), 138–144.

Moridi, H., Karimi, J., Sheikh, N., Goodarzi, M. T., Saidijam, M., Yadegarazari, R., Khazaei, M., Khodadadi, I., Tavilani, H., Piri, H., Asadi, S., Zarei, S., & Rezaei, A. (2015). Resveratrol-dependent down-regulation of receptor for advanced glycation end-products and oxidative stress in kidney of rats with diabetes. International Journal of Endocrinology and Metabolism, 13(2), e23542.

Nishiyama, A., & Kobori, H. (2018). Independent regulation of renin-angiotensin-aldosterone system in the kidney. Clinical and Experimental Nephrology, 22(6), 1231–1239.

Rastogi, S., & Haldar, C. (2018). Comparative effect of melatonin and quercetin in counteracting LPS induced oxidative stress in bone marrow mononuclear cells and spleen of Funambulus pennanti. Food and Chemical Toxicology, 120, 243–252.

Reidy, K., Kang, H. M., Hostetter, T., & Susztak, K. (2014). Molecular mechanisms of diabetic kidney disease. The Journal of Clinical Investigation, 124(6), 2333–2340.

Rhee, S. Y., & Kim, Y. S. (2018). The role of advanced glycation end products in diabetic vascular complications. Diabetes and Metabolism Journal, 42(3), 188–195.

Rodrigues, L., Matafome, P., Crisóstomo, J., Santos-Silva, D., Sena, C., Pereira, P., & Seiça, R. (2014). Advanced glycation end products and diabetic nephropathy: A comparative study using diabetic and normal rats with methylglyoxal-induced glycation. Journal of Physiology and Biochemistry, 70(1), 173–184.

Ryoo, J. H., Oh, C. M., Kim, H. S., Park, S. K., & Choi, J. M. (2014). Clinical association between serum γ-glutamyltransferase levels and the development of insulin resistance in Korean men: A 5-year follow-up study. Diabetic Medicine, 31(4), 455–461.

Sabanayagam, C., Shankar, A., Li, J., Pollard, C., & Ducatman, A. (2009). Serum gamma-glutamyl transferase level and diabetes mellitus among US adults. European Journal of Epidemiology, 24(7), 369–373.

Sadi, G., Şahin, G., & Bostancı, A. (2018). Modulation of renal insulin signaling pathway and antioxidant enzymes with streptozotocin-induced diabetes: Effects of resveratrol. Medicina, 55(1), e3.

Salmanoglu, D. S., Gurpinar, T., Vural, K., Ekerbicer, N., Darıverenli, E., & Var, A. (2016). Melatonin and L-carnitin improves endothelial disfunction and oxidative stress in Type 2 diabetic rats. Redox Biology, 8, 199–204.

Schleicher, E. D., & Weigert, C. (2000). Role of the hexosamine biosynthetic pathway in diabetic nephropathy. Kidney International, Supplement, 77, S13–S18.

Sousa, A. G., Cabral, J. V., El-Feghaly, W. B., de Sousa, L. S., & Nunes, A. B. (2016). Hyporeninemic hypoaldosteronism and diabetes mellitus: Pathophysiology assumptions, clinical aspects and implications for management. World Journal of Diabetes, 7(5), 101–111.

Squier, T. C. (2001). Oxidative stress and protein aggregation during biological aging. Experimental Gerontology, 36(9), 1539–1550.

Tangvarasittichai, S. (2015). Oxidative stress, insulin resistance, dyslipidemia and type 2 diabetes mellitus. World Journal of Diabetes, 6(3), 456–480.

Teng, B., Duong, M., Tossidou, I., Yu, X., & Schiffer, M. (2014). Role of protein kinase C in podocytes and development of glomerular damage in diabetic nephropathy. Frontiers in Endocrinology, 5, 179.

Tonelli, M., Wiebe, N., Richard, J. F., Klarenbach, S. W., & Hemmelgarn, B. R. (2019). Characteristics of adults with type 2 diabetes mellitus by category of chronic kidney disease and presence of cardiovascular disease in Alberta Canada: A cross-sectional study. Canadian Journal of Kidney Health and Disease, 6, 1–13.

Torino, C., Mattace-Raso, F., van Saase, J. L., Postorino, M., Tripepi, G. L., Mallamaci, F., Zoccali C., & Progredire Study Group (2016). Oxidative stress as estimated by gamma-glutamyl transferase levels amplifies the alkaline phosphatase-dependent risk for mortality in ESKD patients on dialysis. Oxidative Medicine and Cellular Longevity, 2016, 8490643.

Toth-Manikowski, S., & Atta, M. G. (2015). Diabetic kidney disease: Pathophysiology and therapeutic targets. Journal of Diabetes Research, 2015, 697010.

Valderrábano, R. J., & Linares, M. I. (2018). Diabetes mellitus and bone health: Epidemiology, etiology and implications for fracture risk stratification. Clinical Diabetes and Endocrinology, 4, 9.

Vallon, V., & Thomson, S. C. (2017). Targeting renal glucose reabsorption to treat hyperglycaemia: The pleiotropic effects of SGLT2 inhibition. Diabetologia, 60(2), 215–225.

Vasconcellos, L. R., Dutra, F. F., Siqueira, M. S., Paula-Neto, H. A., Dahan, J., Kiarely, E., Carneiro, L. A. M., Bozza, M. T., & Travassos, L. H. (2016). Protein aggregation as a cellular response to oxidative stress induced by heme and iron. Proceedings of the National Academy of Sciences of the United States of America, 113(47), e7474–e7482.

Wall, S. B., Oh, J. Y., Diers, A. R., & Landar, A. (2012). Oxidative modification of proteins: An emerging mechanism of cell signaling. Frontiers in Physiology, 3, 369.

Wang, Z., Yang, Y., Xiang, X., Zhu, Y., Men, J., & He, M. (2010). Estimation of the normal range of blood glucose in rats. Journal of Hygiene Research, (39)2, 133–137.

Wei, D., Chen, T., Li, J., Gao, Y., Ren, Y., Zhang, X., Yu, H., & Tian, H. (2015). Association of serum gamma-glutamyl transferase and ferritin with the metabolic syndrome. Journal of Diabetes Research, 2015, 741731.

Weir, M. R., & Rolfe, M. (2010). Potassium homeostasis and renin-angiotensin-aldosterone system inhibitors. Clinical Journal of the American Society of Nephrology, 5(3), 531–548.

Yan, L. J. (2018). Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Models and Experimental Medicine, 1(1), 7–13.

How to Cite
Semenko, A. V., Murdasov, Y. V., Kirichenko, S. V., Zhyliuk, V. I., & UshakovаG. A. (2020). Influence of melatonin on the kidneys of rats with experimental diabetes mellitus type 2. Regulatory Mechanisms in Biosystems, 11(3), 384-391.