Impact of mineral fertilizers, growth stimulators, pH regulators, vitamins and pigment supplements on the vitality of entomopathogenic nematodes of Steinernematidae and Heterorhabditidae families

Keywords: Steinernema feltiae; S. kraussei; S. carpocapsae; Heterorhabditis bacteriophora; insect pests; insecticides; range of tolerance.

Abstract

Parasites of agricultural crops cause significant losses of quality and decrease in the profitability of agricultural production. Complex measures against pests are aimed both at termination of parasites and prevention of repeated infection of plants. One of the most progressive ways of protecting plants against harmful insects is the use of entomopathogenic nematodes. This method is most expedient in the conditions of organic arable farming. The results of our study reveal the impact of the fertilizers in various concentrations on the vitality of nematode larvae (L3) of four species (Steinernema feltiae, S. kraussei, S. carpocapsae and Heterorhabditis bacteriophora) and the possibility of their combined application for the treatment of plants. Mineral fertilizers and stimulators of growth of plants in 1% concentration insignificantly reduced the vitality of larvae, allowing them to be applied at the same time. We determined the tolerance of invasive larvae to pH for S. carpocapsae equaling рН = 0.9–13.4; optimum values of рН without reliable increase in the mortality during 24 h – рН = 1.3–12.8. Increase in the vitality of larvae (L3) of entomopathogenic nematodes was studied. The survivability of the cultures of larvae increased during the use of solutions of vitamins С, В1, В6, В12. We determined the influence of 21 pigment colourings on larvae (L3), the lowest effect on the vitality of nematode larvae was exerted by pigment bases Abrikos (7.0–10.8% mortality during 24 h), Zolotoi Pesok (6.0–11.8%), Pudra Ananasa (7.7–13.4%), and complex DMAE (7.6–17.4%). The results we obtained allow development of recommendations for agriculturalists for combined use of entomopathogenic nematodes with various substances and also improving the vitality of invasive nematodes.

References

Adams, B. J., & Nguyen, K. B. (2002). Taxonomy and systematic. In: Gaugler, R. (Ed.). Entomopathogenic nematology. Wallingford, UK, CABI Publishing, Pp. 1–33.

Akhurst, R. J. (1980). Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. Microbiology, 121(2), 303–309.

Akhurst, R. J. (1987). Use of starch gel electrophoresis in the taxonomy of the genus Heterorhabditis (Nematoda: Heterorhabditidae). Nematologica, 33(1), 1–9.

Bedding, R., Akhurst, R., & Kaya, H. (Eds.). (1993). Nematodes and the biological control of insect pests. CSIRO Publishing, Clayton.

Benhalima, H., Chaudhry, M. Q., Mills, K. A., & Price, N. R. (2004). Phosphine resistance in stored-product insects collected from various grain storage facilities in Morocco. Journal of Stored Products Research, 40(3), 241–249.

Boemare, N. (2002). Biology, taxonomy and systematics of Photorhabdus and Xenorhabdus. In: Gaugler, R. (Ed.). Entomopathogenic nematology. CABI Publishing, New Jersey. Pp. 35–56.

Boemare, N. (2002). Interactions between the partners of the entomopathogenic bacterium nematode complexes, Steinernema-Xenorhabdus and Heterorhabditis-Photorhabdus. Nematology, 4(5), 601–603.

Boyko, A. A., & Brygadyrenko, V. V. (2017). Changes in the viability of the eggs of Ascaris suum under the influence of flavourings and source materials approved for use in and on foods. Biosystems Diversity, 25(2), 162–166.

Boyko, O. O., & Brygadyrenko, V. V. (2018). The impact of certain flavourings and preservatives on the survivability of larvae of nematodes of Ruminantia. Regulatory Mechanisms in Biosystems, 9(1), 118–123.

Boyko, O. O., & Brygadyrenko, V. V. (2019a). The impact of acids approved for use in foods on the vitality of Haemonchus contortus and Strongyloides papillosus (Nematoda) larvae. Helminthologia, 56(3), 202–210.

Boyko, O. O., & Brygadyrenko, V. V. (2019b). The viability of Haemonchus contortus (Nematoda, Strongylida) and Strongyloides papillosus (Nematoda, Rhabditida) larvae exposed to various flavourings and source materials used in food production. Vestnik Zoologii, 53(6), 433–442.

Canning, E. U. (1982). An evaluation of protozoal characteristics in relation to biological control of pests. Parasitology, 84(4), 119–149.

Creighton, C. S., & Fassuliotis, G. (1985). Heterorhabdus sp. (Nematoda: Heterorhabditidae): A nematode parasite isolated from the banded cucumber Diabrotica balteata. Journal of Nematology, 17(2), 150–153.

Dara, S. K. (2019). The new integrated pest management paradigm for the modern age. Journal of Integrated Pest Management, 10(1), 12.

Eng, M. S., Preisser, E. L., & Strong, D. R. (2005). Phoresy of the entomopathogenic nematode Heterorhabditis marelatus by a non-host organism, the isopod Porcellio scaber. Journal of Invertebrate Pathology, 88(2), 173–176.

Gaugler, R., Lewis, E., & Stuart, R. J. (1997). Ecology in the service of biological control: The case of entomopathogenic nematodes. Oecologia, 109(4), 483–489.

Georgis, R., & Hague, N. G. M. (1981). A neoaplectanid nematode in the larch sawfly Cephalcia lariciphila (Hymenoptera: Pamphiliidae). Annals of Applied Biology, 99(2), 171–177.

Kaya, H. K., & Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology, 38(1), 181–206.

Kaya, H. K., & Koppenhöfer, A. M. (1996). Effects of microbial and other antagonistic organism and competition on entomopathogenic nematodes. Biocontrol Science and Technology, 6(3), 357–372.

Kaya, H. K., & Stock, S. P. (1997). Techniques in insect nematology. In: Lacey, L. A. (Ed.). Manual of techniques in insect pathology. Academic Press, San Diego. Pp. 281–324.

Kaya, H., & Campbell, J. (2000). Influence of insect associated cues on the jumping behavior of entomopathogenic nematodes (Steinernema spp.). Behaviour, 137(5), 591–609.

Khachatourians, G. (1986). Production and use of biological pest control agents. Trends in Biotechnology, 4(5), 120–124.

Koppenhöfer, A. M., & Kaya, H. K. (1996). Coexistence of two steinernematid nematode species (Rhabditida: Steinernematidae) in the presence of two host species. Applied Soil Ecology, 4(3), 221–230.

Koul, O., & Walia, S. (2009). Comparing impacts of plant extracts and pure allelochemicals and implications for pest control. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 49, 1–30.

Lasey, L. A., Frutos, R., Kaya, H. K., & Vail, P. S. (2001). Insect pathogens as biological control agents: Do they have a future? Biological Control, 21(3), 230–248.

Martens, E. C., Heungens, K., & Goodrich-Blair, H. (2003). Early colonization events in the mutualistic association between Steinernema carpocapsae nematodes and Xenorhabdus nematophila bacteria. Journal of Bacteriology, 185(10), 3147–3154.

Martynov, V. O. (2018). Parasites of beetles which are pests of grain and products of its processing. Biosystems Diversity, 25(4), 342–353.

Millar, L. C., & Barbercheck, M. E. (2001). Interaction between endemic and introduced entomopathogenic nematodes in conventional-till and no-till corn. Biological Control, 22(3), 235–245.

Mracek, Z., Gut, J., & Gerbin, S. (1982). Neoaplectana bibionis Bovien, 1937, an obligate of insects isolated from forest soil in Czechoslovakia. Folia Parasitologica, 29, 139–145.

Nickle, W. R., & Welch, H. E (1984). History, development, and importance of insect nematodes. In: Nickle, W. R. (Ed.). Plant and insect nematodes. Marcel Dekker Inc., New York, Basel. Pp. 627–653.

Pimentel, M. A. G., Faroni, L. R. D., Guedes, R. N. C., Sousa, A. H., & Tótola, M. R. (2009). Phosphine resistance in Brazilian populations of Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). Journal of Stored Products Research, 45(1), 71–74.

Poinar, G. O. (1986). Recognition of Neoaplectana species (Steinernematidae: Rhabditida). Proceedings of the Helminthological Society of Washington, 53(1), 121–130.

Poinar, G. O. Jr. (1967). Description and taxonomic position of the DD-136 nematode (Steinernematidae: Rhabdititoidea) and its relationship to Neoaplectana carpocapsae Weiser. Proceedings of the Helminthological Society of Washington, 34, 199–201.

Poinar, G. O. Jr. (1990). Taxonomy and biology of Steinernematidae and Heterorhabditidae. In: Gaugler, R., & Kaya, H. K. (Ed.). Entomopathogenic nematodes in biological control. CRC Press, Boca Raton, Ann Arbor, Boston. Pp. 21–62.

Poinar, G. O. Jr. (1992). Nematodes associated with Scarabaeidae. In: Jackson, T. A., & Glare, T. R. (Ed.). Use of pathogens in scarab pest management. AgResearch, Lincoln, New Zealand. Pp. 93–109.

Poinar, G. O., & Ennik, F. (1972). The use of Neoaplectana carpocapsae (Steinernematidae: Rhabditoidea) against adult yellow jackets (Vespula spp., Vespidae: Hymenoptera). Journal of Invertebrate Pathology, 19(3), 331–334.

Poinar, G. O., & Georgis, R. (1990). Characterization and field application of Heterorhabditis bacteriophora srain HP88 (Heterorhabditidae: Rhabditida). Revue de Nematologie, 13, 387–393.

Pollitt, S., Peters, A., & Ehlers, R. U. (1994). Control potential of a naturally occuring Steinernema feltiae popylation. IOBS/WPRS Bulletin, 17, 144–146.

Pye, A. E., & Burman, M. (1978). Neoaplectana carpocapsae: Infection and reproduction in large pine weevil larvae, Hylobius abietis. Experimental Parasitology, 46(1), 1–11.

Smart, G. C. (1995). Entomopathogenic nematodes for the biological control of insects. Journal of Nematology, 27(4S), 529–534.

Stuart, R. J., & Gaugler, R. (1994). Patchiness in populations of entomopathogenic nematodes. Journal of Invertebrate Pathology, 64(1), 39–45.

Turco, C. P., Thames, W. H., & Hopkins, S. H. (1971). On the taxonomic status and comparative morphology of species of the genus Neoaplectana Steiner (Neoaplectanidae: Nematoda). Proceeding of the Helminthological Society of Washington, 38(1), 68–79.

Vainio, A., & Hokkanen, H. M. T. (1993). The potential of entomopathogenic fungi and nematodes against Otiorhynchus ovatus L. and O. dubius Ström (Col., Curculionidae) in the field. Journal of Applied Entomology, 115, 379–387.

Weiser, J., & Veber, J. (2009). Die Mikrosporidie Thelohania hyphantriae Weiser des weißen Bärenspinners und anderer Mitglieder seiner Biocönose. Zeitschrift Für Angewandte Entomologie, 40(1), 55–70.

Wouts, W. M., Mráček, Z., Gerdin, S., & Bedding, R. A. (1982). Neoaplectana Steiner, 1929 a junior synonym of Steinernema Travassos, 1927 (Nematoda; Rhabditida). Systematic Parasitology, 4(2), 147–154.

Wright, D., Perry, R., & Piggott, S. (2000). Hypo-osmotic regulation in entomopathogenic nematodes: Steinernema spp. and Heterorhabditis spp. Nematology, 2(5), 561–566.

Wright, P. J., & Jackson, T. A. (1988). Low temperature activity and infectivity of a parasitic nematode against porina and grass grub larvae. Proceedings of the New Zealand Weed and Pest Control Conference, 41, 138–140.

Published
2020-04-03
How to Cite
Kolombar, T. M., Gugosyan, Y. A., & Brygadyrenko, V. V. (2020). Impact of mineral fertilizers, growth stimulators, pH regulators, vitamins and pigment supplements on the vitality of entomopathogenic nematodes of Steinernematidae and Heterorhabditidae families . Regulatory Mechanisms in Biosystems, 11(2), 323-329. https://doi.org/10.15421/022049