Low-molecular weight components of cow colostrum regulate bone marrow functions by modelling the redox-system of the organism

Keywords: morphotypes; oxidative stress; transfer factor; eosinophilia.


Colostrum is rich in various biologically active compounds such as immunotropic ones. Low molecular weight components were isolated from cow colostrum components (with a molecular weight of not more than 45 kDa). Their influence was investigated on intact Wistar Rattus norvegicus adult males in concentrations of 0.01, 0.1, 1.0 and 5.0 g/100 g of body weight. We determined content of lipid hydroperoxides and activity of serum glutathione peroxidase in blood serum, parameters of the bone marrow cells’ (BMCs) behaviour in the in vitro system (proliferation ability, morphologically identifiable and unidentifiable type of cells, lifespan of eosinophils). Morphological identifiable cells were stab neutrophils, segmented neutrophils, metamyelocytes, myelocytes, lymphocytes, basophils, neutrophils, eosinophils, monocytes. The low doses of colostrum components (0.01–0.10 g/100 g of body weight) did not affect the ratio of morphologically identifiable/unidentifiable cells. Administration of colostrum components at low doses (0.01 g/100 g of weight) increased the ability of BMCs to proliferate in the in vitro system. A super-large dose of colostrum components (5 g/100 g of body weight) was accompanied by a further loss of capacity for proliferation and cell death. Moreover, large doses of colostrum components resulted in change of balance to prooxidants (oxidants). The role of redox – system in BMCs functions was discussed. Large doses of colostrum components (1–5 g/100 g of body weight) were accompanied by a change of pro-antioxidant system balance. Only eosinophils were determined after administration of colostrum components in a large dose. It should be noted that the lifetime of eosinophils which developed under influence of colostrum components was greater than that of eosinophils obtained from control animals.


Asakawa, T., & Matsushita, S. (1980). Coloring condition of thiobarbituric acid test for detecting lipid hydroperoxides, Lipids, 15, 137–140.

Ascher, M. S., Gottlieb, A. A., & Kirkpatrick, C. H. (Ed.). (2014). Transfer factor: Basic properties and clinical applications. Academic Press, London.

Awan, B., Turkov, D., Schumacher, C., Jacobo, A., McEnerney, A., Ramsey, A., & Jao, L. E. (2018). FGF2 induces migration of human bone marrow stromal cells by increasing core fucosylations on N-glycans of integrins. Stem Cell Reports, 11(2), 325–333.

Bagwe, S. L., Tharappel, L. J., Kaur, G., & Buttar, H. S. (2015). Bovine colostrum: An emerging nutraceutical. Journal of Complementary and Integrative Medicine, 12, 175–185.

Bozhkov, A. I., Ivanov, E. G., Al Begai, M. A., Alsardia, M. M., & Kurguzova, N. I. (2017). Low-molecular weight cow colostrum components in functional nutrition. Journal of Nutritional Therapeutics, 6(1), 11–17.

Bozhkov, A. I., Ivanov, E. G., Kurguzova, N. I., Alsardia, M. M., Akzhigitov, R. A., Baranikova, S. Y., & Chuprikova, A. S. (2018). The toxice of low molecular weight components of cow colostrums: The short-term and long-term effects. Journal of Nutritional Therapeutics, 6(4), 84–91.

Bozhkov, A. I., Ivanov, E. G., Kuznetsova, Y. A., Ohiienko, S. L., & Bondar, A. Y. (2017). Copper-induced liver fibrosis affects the behavior of bone marrow cells in primary culture. Frontiers in Biology, 12, 271–279.

Bozhkov, A. I., Nikitchenko, Y. V., & Al-Bahadly, A. M. M. (2016). Overeating in early postnatal ontogenesis forms metabolic memory and reduces lifespan. Journal of Gerontological and Geriatrics Research, 309(2), 3–12.

Bozhkov, A. I., Nikitchenko, Y. V., Lebid, K. M., Ivanov, E. G., Kurguzova, N. I., Gayevoy, S. S., & Al Begai, M. A. Y. (2017). Low molecular weight components from various sources eliminate oxidative stress and restore physiological characteristic of animals at early stages of Cu-induced liver fibrosis development. Translational Biomedicine, 8(2), 22–32.

Fujimori, M., França, E. L., Morais, T. C., Fiorin, V., de Abreu, L. C., & Honório-França, A. C. (2017). Cytokine and adipokine are biofactors can act in blood and colostrum of obese mothers. Biofactors, 43(2), 243–250.

Javazon, E. H., Beggs, K. J., & Flake, A. W. (2004). Mesenchymal stem cells: Paradoxes of passaging. Experimental Hematology, 32(5), 414–425.

Klein, B. Y., Tamir, H., Ludwig, R. J., Glickstein, S. B., & Welch, M. G. (2017). Colostrum oxytocin modulates cellular stress response, inflammation, and autophagy markers in newborn rat gut villi. Biochemical and Biophysical Research Communications, 487(1), 47–53.

Kurguzova, N. I., Bozhkov, A. I., Nikitchenko, Y. V., Al Begai, M. A. Y., Goltvyansky, A. V., Alsardia, M. M. A., & Bozhkov, A. A. (2015). Interconnection of antitoxic and antioxidant systems of the organism under the action of natural low molecular complex – fungidol. American Journal of Biomedical and Life Sciences, 2, 25–32.

Laemmli, U. K., Laemmli, D. K., Laemmli, U., Laemli, U. K., Lammeli, U., Lammeli, U. K., & Laemmli, V. K. (1970). Denaturing (SDS) discontinuous gel electrophoresis, 227, 680–685.

Meade, J. C., Levine, A. H., Melanson, D. A., & Cvinar, J. F. (2015). U.S. Patent No. 9,084,669. Washington, DC: U.S. Patent and Trademark Office.

Méndez-Ferrer, S., Michurina, T. V., Ferraro, F., Mazloom, A. R., MacArthur, B. D., Lira, S. A., & Frenette, P. S. (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466(7308), 829–834.

Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70(1), 158–169.

Rathe, M., Müller, K., Sangild, P. T., & Husby, S. (2014). Clinical applications of bovine colostrum therapy: A systematic review. Nutrition Rewires, 72, 237–254.

Sanchez-Soto, E., Ponce-Ramos, R., Hernandez-Gutierrez, R., Gutierrez-Ortega, A., Alvarez, A. H., Martinez-Velazquez, M., & Herrera-Rodriguez, S. E. (2017). Colostrum proinflammatory cytokines as biomarkers of bovine immune response to bovine tuberculosis (bTB). Microbial Pathogenesis, 103, 57–64.

Saretzki, G., Armstrong, L., Leake, A., Lako, M., & Zglinicki, T. (2004). Stress defense in murine embryonic stem cells is superior to that of various differentiated murine cell. Stem Cells, 22(6), 962–971.

Stzepourginski, I., Nigro, G., Jacob, J. M., Dulauroy, S., Sansonetti, P. J., Eberl, G., & Peduto, L. (2017). CD34+ mesenchymal cells are a major component of the intestinal stem cells niche at homeostasis and after injury. Proceedings of the National Academy of Sciences, 114(4), E506–E513.

How to Cite
Bozhkov, A. I., Ohiienko, S. L., Bondar, A. Y., Ivanov, E. G., & Kurguzova , N. I. (2020). Low-molecular weight components of cow colostrum regulate bone marrow functions by modelling the redox-system of the organism . Regulatory Mechanisms in Biosystems, 11(2), 272-277. https://doi.org/10.15421/022040