The lipid metabolism in carp during invasion by the tapeworn Bothriocephalus acheilognathi

Keywords: fatty acids; intestine; hepatopancreas; skeletal muscle; metabolism; Bothriocephalidae; Pseudophyllidae.

Abstract

The changes in total lipids, their fatty acid composition and the ratio of individual classes were established in tissues of the intestine, hepatopancreas and skeletal muscles of carp (Cyprinus carpio Linnaeus, 1758), with body weight 14.5–20.5 g, at different rates of invasion by Bothriocephalus acheilognathi (Yamaguti, 1934) helminth, which belongs to the family Bothriocephalidae, of the Pseudophyllidae order, of the Cestoda class. The examined carp was divided into three groups: first group of fish was free from intestinal helminths of B. acheilognathi (control); second group of fish was weakly infected with helminths (intensity of invasion is 1–3 helminths per fish); the third group of fish was highly infected (the invasion intensity is 4 worms and more per fish). Our results showed that fish infected with helminth B. acheilognathi compared to uninfected fish had reduced total lipid level in the gut due to phospholipids, triacylglycerols, and also lipids were characterized by lower content of linoleic, linolenic, arachidonic, penta- and hexanoic fatty acids; decrease in the level of unsaturated and increase in the content of saturated fatty acids, which leads to an increase of the saturation factor. During the infection of carp with B. acheilognathi in the hepatopancreas, the content of total lipids, structural lipids – phospholipids and reserve energy sources – triacylglycerols is probably reduced, and lipids are characterized by a high content of saturated fatty acids (С14:0, С16:0, С18:0) and lower content of unsaturated: arachidonic (С20:4), linolenic (С18:3) and linoleic acid (С18:2), which is associated with a decrease in the source for the synthesis of a number of polyunsaturated fatty acids, especially docosahexaenoic (С22:6). The total content of lipids, triacylglycerols, free fatty acids and phospholipids in skeletal muscle of carp during the Bothriocephalus invasion decreased and the content of free cholesterol, mono- and triacylglycerols increased. Helminth B. acheilognathi has the effect of reducing the total lipids of the skeletal muscle content of С18-, С20-, С22-polyunsaturated fatty acids and increasing the content of saturated (С14:0, С16:0, С18:0) and monounsaturated (С16:1, С18:1) fatty acids. The obtained results prove that the parasite B. acheilognathi in the intestine of the carp significantly affects the nutrition processes of the host depending on the intensity of the damage by helminths, which is accompanied by impaired lipid metabolism.

References

Agrawal, A. A., Ackerly, D. D., Adler, F., Arnold, A. E., Cacéres, C., Doak, D. F., Post, E., Hudson, P. J., Maron, J., Mooney, K. A., Power, M., Schemske, D., Stachowicz, J., Strauss, S., Turner, M. G., & Werner, E. (2007). Filling key gaps in population and community ecology. Frontiers in Ecology and the Environment, 5(3), 145–152.

Ahmad, F., Fazili, K. M., Sof, O. M., Sheikh, B. A., & Sof, T. A. (2018). Distribución y patología causada por Bothriocephalus acheilognathi, Yamaguti 1934 (Cestoda: Bothriocephalidae). Revisión bibliográfica. Revista Veterinaria, 29(2), 142–149.

Al-Niaeemi, B. H., & Dawood, M. H. (2017). Tоtal lipids estimation and fatty acids analysis of Bothriocephalus acheilognathi, a parasitis tapeworm of the common carp (Cyprinus carpio L., 1758) from tigris river-mosul city. World Journal of Pharmacy and Pharmaceutical Sciences, 6(9), 1641–1651.

Arkhipov, A. V., & Antonov, A. A. (1979). Izuchenie lipidov i lipidnovo obmena u selskochozctvennuch zhivotnux i ptitz s primeneniem tonkosloynoy i gazozhidkostnoy chromatodrafii [The study of lipids and lipid metabolism in farm animals and birds using thin-layer and gas-liquid chromatography]. Moscow (in Russian).

Böhm, M., Schultz, S., Koussoroplis, A.-M., & Kainz, M. J. (2014). Tissue-specific fatty acids response to different diets in common carp (Cyprinus carpio L.). PLoS One, 9(4), e94759.

Bradbury, J. (2011). Docosahexaenoic acid (DHA): An ancient nutrient for the modern human brain. Nutrients, 3(5), 529–554.

Britton, J. R., Pegg, J., & Williams, C. F. (2011). Pathological and ecological host consequences of infection by an introduced fish parasite. PLoS One, 6(10), e26365.

Davies, K. J. A. (2016). Adaptive homeostasis. Molecular aspects of medicine, 49, 1–7.

Dey, S., Misra, K. K., & Homechoudhuri, S., (2015). Analysis of major lipid classes and their fatty acid composition of an Indian minor carp Puntius sophore in order to evaluate its nutritional aspects. International Journal of Advance Research in Biological Science, 2(8), 100–119.

Folch, J., Lees, M., & Stanley, S. G. (1957). A simple method for the isolation and purification of total lipides from animal tissues. Journal of Biological Chemistry, 226 (1), 497–509.

Gaikwad, P. R., Sonune, M. B., & Nagmote, S. R. (2016). Histopathological effects of the Cestode parasites on fishes from the Amravati region of Vidarbha (MS) India. International Journal of Life Sciences, 4(4), 602–605.

Hansen, S. P., Choudhury, A., Heisey, D. M., Ahumada, J. A., Hoffnagle, T. L., & Cole, R. A. (2006). Experimental infection of the endangered bonytail chub (Gila elegans) with the Asian fish tapeworm (Bothriocephalus acheilognathi): Impacts on survival, growth, and condition. Canadian Journal of Zoology, 84(10), 1383–1394.

Hashimoto, M., & Hossain, S. (2018). Fatty acids: From membrane ingredients to signaling molecules. In: Biochemistry and Health benefits of fatty acids. Viduranga Waisundara. IntechOpen.

Hassan, H. F., Hashim, D. S., & Abdullah, S. M. A. (2016). Identification of some Iraqi Fish parasites by using biochemical and molecular protocols. International Journal of Current Research and Academic Review, 4(1), 54–64.

Hrytsyniak, I. I., Smolianinov, K. B., & Yanovich, V. G. (2010). Obmin lipidiv u ryb [Lipid metabolism in fish: monograph]. Triad Plus, Lviv (in Ukrainian).

Hu, W., Mai, K.-S., Luo, Z., Zheng, J.-L., Chen, Q.-L., & Pan, Y.-X. (2016). Effect of waterborne copper on lipid metabolism in hepatopancreas and muscle of grass carp Ctenopharyngodon idella. Aquaculture Research, 48(4), 1458–1468.

Kainz, M. J., Hager, H. H., Rasconi, S., Kahilainen, K. K., Amundsen, P.-A., & Hayden, B. (2017). Polyunsaturated fatty acids in fishes increase with total lipids irrespective of feeding sources and trophic position. Ecosphere, 8(4), e01753.

Kates, M. (1975). Technika lipidologii. Vidilenie, analis i indentifikatsia lipidov [Technique of lipidology. Isolation, analysis and identification of lipids]. Mir, Moscow (in Russian).

Klein, S. L. (2005). Parasite manipulation of host behavior: Mechanisms, ecology, and future directions. Behavioural Processes, 68(3), 219–221.

Kmínková, M., Winterová, R., & Kučera, J. (2013). Fatty acids in lipids of carp (Cyprinus carpio) tissues. Czech Journal of Food Sciences, 19(5), 177–181.

Kuchta, R., Choudhury, A., & Scholz, T. (2018). Asian fish tapeworm: The most successful invasive parasite in freshwaters. Trends in Parasitology, 34(6), 511–523.

Lei, C. X., Tian, J. J., Ji, H., Chen, L. Q., & Du, Z. Y. (2015). Dietary α-linolenic acid affects lipid metabolism and tissue fatty acid profile and induces apoptosis in intraperitoneal adipose tissue of juvenile grass carp (Ctenopharyngodon idella). Aquaculture Nutrition, 23(1), 160–170.

Liavrin, B. Z., Senyk, Y. I., Khomenchuk, V. O., & Kurant, V. Z. (2014). Vmist nepoliarnykh lipidiv u tkanynakh pechinky deiakykh vydiv ryb malykh richok Zakhidnoho Podillia [Content of nonpolar lipids in liver tissues of some fish species of the small rivers of the West Podillya]. Hydrobyolohycheskyi Zhurnal, 50(6), 60–66 (in Ukrainian).

Luo, Z., Tan, X.-Y., Wang, W.-M., & Fan, Q.-X. (2009). Effects of long-term starvation on body weight and body composition of juvenile channel catfish, Ictalurus punctatus, with special emphasis on amino acid and fatty acid changes. Journal of Applied Ichthyology, 25(2), 184–189.

Marenkov, O. N. (2018). Ecological and biological aspects of zander and Volga zander reproduction under conditions of the Zaporizhzhia reservoir (Ukraine). Ukrainian Journal of Ecology, 8(1), 441–450.

Murzina, S. A., Pekkoeva, S. N., Kondakova, E. A., Nefedova, Z. A., Filippova, K. A., Nemova, N. N., Orlov, A. M., Berge, J., & Falk-Petersen, S. (2020). Tiny but fatty: Lipids and fatty acids in the daubed shanny (Leptoclinus maculatus), a small fish in svalbard waters. Biomolecules, 10(3), 368.

Murzina, S., Nefedova, Z., Falk-Petersen, S., Ripatti, P., Ruokolainen, T., Pekkoeva, S., & Nemova, N. (2013). Lipid status of the two high latitude fish species, Leptoclinus maculatus and Lumpenus fabricii. International Journal of Molecular Sciences, 14(4), 7048–7060.

Murzina, S., Nefedova, Z., Pekkoeva, S., Veselov, A., Efremov, D., & Nemova, N. (2016). Age-specific lipid and fatty acid profiles of atlantic salmon juveniles in the Varzuga river. International Journal of Molecular Sciences, 17(7), 1050.

Pegg, J., Andreou, D., Williams, C. F., & Britton, J. R. (2015). Temporal changes in growth, condition and trophic niche in juvenile Cyprinus carpio infected with a non-native parasite. Parasitology, 142(13), 1579–1587.

Pukalo, P., & Shekk, P. (2018). Parasitic diseases of fish in the ponds of farms of the Lviv regional fishery plant. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, Series Veterinary Sciences, 83, 141–144.

Scholz, T., Kuchta, R., & Williams, C. (2012). Bothriocephalus acheilognathi. In: Fish parasites: Pathobiology and protection. CABI, Wallingford. Pp. 282–297.

Sidorov, V. S., Lizenko, E. I., & Bolgova, O. M. (1981). Tipovye metody isledovania produktivnosti vidov rib v predelah ich arealov [Typical methods of research of productivity of fish species within their ranges]. Part 4. Vilnius (in Russian).

Stahl, E. (1965). Chromatografia v tonkih sloyah [Chromatography in thin layers]. Mir, Moscow (in Russian).

Steffens, W., & Wirth, M. (2007). Influence of nutrition on the lipid quality of pond fish: Common carp (Cyprinus carpio) and tench (Tinca tinca). Aquaculture International, 15(3–4), 313–319.

Suleimanova, R., Melnychuk, D., & Kalachniuk, L. (2018). Indices of fatty acids spectrum of lipids in the blood serum of sterlet of different age. Eureka: Life Sciences, 2, 3–8.

Sysoliatin, S. V., Midyk, S. V., & Khyzhnyak, S. V. (2017). Influence of hypoxia and hypercapnia on fatty acid composition of lipids in white muscles of common carp Cyprinus carpio. Problems of Cryobiology and Cryomedicine, 27(3), 195–202.

Sysolyatin, S. V., & Khyzhnyak, S. V. (2017). Fatty acid composition of total lipids in liver of carp (Cyprinus carpio L.) under artificial hibernation. Reports of the National Academy of Sciences of Ukraine, (8), 102–105.

Tanck, M. W. T., Booms, G. H. R., Eding, E. H., Bonga, S. E. W., & Komen, J. (2000). Cold shocks: A stressor for common carp. Journal of Fish Biology, 57(4), 881–894.

Tocher, D. R. (2003). Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science, 11(2), 107–184.

Tocher, D. R., & Glencross, B. D. (2015). Lipids and fatty acids. In: Lee, C.-S., Lim, C., Gatlin, D. M., & Webster, C. D. (Eds.). Dietary nutrients, additives, and fish health. Wiley. Pp. 47–94.

Vlizlo, V. V., Fedoruk, R. S., & Ratych, I. B. (2012). Laboratorni metody doslidzhen u biolohii, tvarynnytstvi ta veterynarnii medytsyni [Laboratory methods of research in biology, animal husbandry and veterinary medicine]. Spolom, Lviv (in Ukrainian).

Watanabe, T. (1993). Importance of docosahexaenoic acid in marine larval fish. Journal of the World Aquaculture Society, 24(2), 152–161.

Zajic, T., Mraz, J., Sampels, S., & Pickova, J. (2013). Fillet quality changes as a result of purging of common carp (Cyprinus carpio L.) with special regard to weight loss and lipid profile. Aquaculture, 400–401, 111–119.

Zargar, U. R., Chishti, M. Z., Yousuf, A. R., & Ahmed, F. (2011). Infection level of the Asian tapeworm (Bothriocephalus acheilognathi) in the cyprinid fish, Schizothorax niger, from Anchar Lake, relative to season, sex, length and condition factor. Parasitology Research, 110(1), 427–435.

Published
2020-04-16
How to Cite
Yuskiv, L. L., & Yuskiv, I. D. (2020). The lipid metabolism in carp during invasion by the tapeworn Bothriocephalus acheilognathi . Regulatory Mechanisms in Biosystems, 11(2), 214-219. https://doi.org/10.15421/022031