Ovocidal action of glutaraldehyde and benzalkonium chloride mixture on Aonchotheca bovis (Nematoda, Capillariidae) embryogenesis

Keywords: capillariasis; sheep; deinvasion; capillaria eggs; viability.

Abstract

Deinvasion, aimed at elimination of environmental exogenic stages of invasion agents and avoidance of their invasion to host organism, occupies an important place in the complex of sanitary and prophylactic activities against animal helminthosis diseases. Application of glutaraldehyde and benzalkonium chloride at vital activity and embryogenesis of Aonchotheca bovis (Schnyder, 1906) obtained from nematode female gonads was investigated with different concentration and exposures. Two test-cultures were used in the experiment. The first culture contained non-invasive eggs of A. bovis, the second contained invasive ones, obtained by the laboratory culturing of gonadic eggs until mobile larva maturing. It was established that glutaraldehyde and benzalkonium chloride mixture has a deinvasive capacity against A. bovis eggs, parasitizing on sheep. Ovocidal efficiency indexes appeared higher with use of the test culture against the non-invasive capillaria eggs’ test-culture. So, the high level of ovocidal efficiency of glutaraldehyde and benzalkonium chloride mixture against non-invasive A. bovis eggs culture was established at the concentration of 0.5% and exposure of 10–60 min (93.6–100.0%), and against the invasive A. bovis egg culture – at the concentration of 0.5% and exposure of 30 and 60 min (90.3–94.6%) and 1.0% at all exposures (100.0%). Ovocidal activity of the examined mixture was accompanied by specific morphological changes of nematode eggs structure. Destruction of the egg envelope, embryo loosening and decay and its dissolution were observed. Such changes are proved by metric indexes of width and length of capillaria eggs, envelope thickness and cap length, indicating the violation of embryogenesis of A. bovis. Thus, glutaraldehyde and benzalkonium chloride mixture of 1.0% concentration is a promising deinvasive agent suitable for effective fight against and prophylaxis of sheep-breeding nematodosis.

References

Beriajaya, & Copeman, D. B. (1998). An estimate of seasonality and intensity of infection with gastrointestinal nematodes in sheep and goats in West Java. Jurnal Ilmu Ternak dan Veteriner, 2(4), 270–276.

Boyko, A. A., & Brygadyrenko, V. V. (2016). Influence of water infusion of medicinal plants on larvae of Strongyloides papillosus (Nematoda, Strongyloididae). Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(2), 519–525.

Boyko, A. A., & Brygadyrenko, V. V. (2017). Changes in the viability of the eggs of Ascaris suum under the influence of flavourings and source materials approved for use in and on foods. Biosystems Diversity, 25(2), 162–166.

Boyko, O. O., & Brygadyrenko, V. V. (2019). The impact of acids approved for use in foods on the vitality of Haemonchus contortus and Strongyloides papillosus (Nematoda) larvae. Helminthologia, 56(3), 202–210.

Brownell, S. A., & Nelson, K. L. (2006). Inactivation of single-celled Ascaris suum eggs by low-pressure UV radiation. Applied and Environmental Microbiology, 72(3), 2178–2184.

Butkus, M. A., Hughes, K. T., Bowman, D. D., Liotta, J. L., Jenkins, M. B., & Labare, M. P. (2011). Inactivation of Ascaris suum by short-chain fatty acids. Applied and Environmental Microbiology, 77, 363–366.

Cable, J., Barber, I., Boag, B., Ellison, A. R., Morgan, E. R., Murray, K., Pascoe, E. L., Sait, S. M., Wilson, A. J., & Booth, M. (2017). Global change, parasite transmission and disease control: Lessons from ecology. Philosophical Transactions of the Royal Society of London, Series B, Biological Sciences, 372(1719), 20160088.

Calegaro-Marques, C., & Amato, S. B. (2014). Urbanization breaks up host-parasite interactions: A case study on parasite community ecology of rufous-bellied thrushes (Turdus rufiventris) along a rural-urban gradient. PLoS One, 9(7), e103144.

Daugschies, A., Bangoura, B., & Lendner, M. (2013). Inactivation of exogenous endoparasite stages by chemical disinfectants: Current state and perspectives. Parasitology Research, 112(3), 917–932.

Dubná, S., Langrová, I., Jankovská, I., Vadlejcha, J., Pekárb, S., Nápravníka, J., & Fechtner, J. (2007). Contamination of soil with Toxocara eggs in urban (Prague) and rural areas in the Czech Republic. Veterinary Parasitology, 144(1–2), 81–86.

Hamer, K., McIntyre, J., Morrison, A. A., Jennings, A., Kelly, R. F., Leeson, S., Bartley, D. J., Chaudhry, U., Busin, V., & Sargison, N. (2019). The dynamics of ovine gastrointestinal nematode infections within ewe and lamb cohorts on three Scottish sheep farms. Preventive Veterinary Medicine, 171, 104752.

Jiménez, B. (2007). Helminth ova control in sludge: a review. Water Science and Technology, 56(9), 147–155.

Kates, K. C. (1965). Ecological aspects of helminth transmission in domesticated animals. American Zoologist, 5, 95–130.

Kowal, J., Nosal, P., Bonczar, Z., & Wajdzik, M. (2012). Parasites of captive fallow deer (Dama dama L.) from southern Poland with special emphasis on Ashworthius sidemi. Annals of Parasitology, 58(1), 23–26.

Lindgren, K., Gunnarsson, S., Höglund, J., Lindahl, C., & Roepstorff, A. (2019). Nematode parasite eggs in pasture soils and pigs on organic farms in Sweden. Organic Agriculture, 2019, in print.

Lýsek, H., Malínský, J., & Janisch, R. (1985). Ultrastructure of eggs of Ascaris lumbricoides Linnaeus, 1758. I. Egg-shells. Folia Parasitologica, 32(4), 381–384.

Mahmoud, L. H. (2002). Scanning electron microscopy of Trichuris trichura. Journal of the Egyptian Society of Parasitology, 32(2), 469–474.

Matthews, J. B., McArthur, C., Robinson, A., & Jackson, F. (2012). The in vitro diagnosis of anthelmintic resistance in cyathostomins. Veterinary Parasitology, 185, 25–31.

Mavrot, F., Hertzberg, H., & Torgerson, P. (2015). Effect of gastro-intestinal nematode infection on sheep performance: A systematic review and meta-analysis. Parasites and Vectors, 8(1), 557.

Maya, C., Ortiz, M., & Jimenez, B. (2010). Viability of Ascaris and other helminth genera non larval eggs in different conditions of temperature, lime (pH) and humidity. Water Science and Technology, 62, 2616–2624.

Melnychuk, V., & Yuskiv, I. (2018). Disinvasive efficacy of chlorine-based preparations of domestic production for eggs of nematodes of the species Aonchotheca bovis parasitizing in sheep. Ukrainian Journal of Veterinary and Agricultural Sciences, 1(2), 15–18.

Meng, X. Q., Wang, S. S., Zhou, W. Q., Wang, B. X., Han, W. S., & Wang, L. (1986). The operculum-plug area and membranous structure of the eggs of Trichuris trichiura. Scanning Electron Microscopy, 3, 1015–1018.

Mielke, D., & Hiepe, T. (1998). The effectiveness of different disinfectants based on p-chloro-m-cresol against Ascaris suum eggs under laboratory conditions. Berliner und Münchener Tierärztliche Wochenschrift, 111(7–8), 291–294.

Moazeni, M., Saadaty Ardakani, Z. S., Saharkhiz, M. J., Jalaei, J., Khademolhoseini, A. A., Shams Esfand Abad, S., & Mootabi Alavi, A. (2017). In vitro ovicidal activity of Peganum harmala seeds extract on the eggs of Fasciola hepatica. Journal of Parasitic Diseases, 41(2), 467–472.

Morrondo, P., Díez-Morrondo, C., Pedreira, J., Díez-Baños, N., Sánchez-Andrade, R., Paz-Silva, A., & Díez-Baños, P. (2006). Toxocara canis larvae viability after disinfectant-exposition. Parasitology Research, 99(5), 558–561.

Moskvina, T. V., Bartkova, A. D., & Ermolenko, A. V. (2016). Geohelminths eggs contamination of sandpits in Vladivostok, Russia. Asian Pacific Journal of Tropical Medicine, 9(12), 1215–1217.

Naidoo, D., Archer, C., Louton, B., & Rodda, N. (2016). Testing household disinfectants for the inactivation of helminth eggs on surfaces and in spills during pit latrine emptying. Water SA, 42(4), 560–570.

Nordin, A., Nyberg, K., & Vinneras, B. (2009). Inactivation of Ascaris eggs in source-separated urine and feces by ammonia at ambient temperatures. Applied and Environmental Microbiology, 75, 662–667.

Nowakowicz-Dębek, B., Ondrašovič, M., Bis-Wencel, H., & Saba, L. (2001). Soil pollution with parasite eggs and larvae at fur-bearing animal farms. Medycyna Weterynaryjna, 57(3), 202–203.

Oliveira, G. L., Vieira, T. M., Nunes, V. F., Ruas, M. O., Duarte, E. R., Moreira, D. L., Kaplan, M. A. C., & Martins, E. R. (2014). Chemical composition and effcacy in the egg-hatching inhibition of essential oil of Piper aduncum against Haemonchus contortus from sheep. Revista Brasileira de Farmacognosia, 24(3), 288–292.

Orta de Velasquez, M. T., Martinez, J. L., Monjeramirez, I., & Rojas-Valencia, M. N. (2004). Destruction of helminth (Ascaris suum) eggs by ozone. Ozone: Science and Engineering, 26, 359–366.

Paliy, A., Sumakova, N., Petrov, R., Shkromada, O., Ulko, L., & Palii, A. (2019). Contamination of urbanized territories with eggs of helmiths of animals. Biosystems Diversity, 27(2), 118–124.

Pecson, B. M., Barrios, J. A., Johnson, D. R., & Nelson, K. L. (2006). A real-time PCR method for quantifying viable Ascaris eggs using the first internally transcribed spacer region of ribosomal DNA. Applied and Environmental Microbiology, 72, 7864–7872.

Rupa, A. P. M., & Portugaliza, H. P. (2016). Prevalence and risk factors associated with gastrointestinal nematode infection in goats raised in Baybay city, Leyte, Philippines. Veterinary World, 9(7), 728–734.

Skrjabin, K. I. (1928). Metod polnyh gel’mintologicheskih vskrytij pozvonochnyh, vkljuchaja cheloveka [The method of complete helminthological autopsy of vertebrates, including humans]. Moscow State University, Moscow (in Russian).

Skrjabin, K. I., Shikhobalova, N. P., & Orlov, I. V. (1957). Osnovy nematodologii. Trihocefalidy i kapilljariidy zhivotnyh i cheloveka i vyzyvaemye imi zabolevanija [Trichocephalids and capillariids of animals and man and the diseases caused by them. The essentials of nematodology]. Russian Academy of Sciences, Moscow (in Russian).

Smales, L. R. (1984). The egg-shell of Labiostrongylus eugenii (Nematoda, Strongyloidea): Structure and function. International Journal for Parasitology, 14(3), 231–239.

Stromberg, B. E. (1997). Environmental factors influencing transmission. Veterinary Parasitology, 72(3–4), 247–256.

Sudhakar, N. R., Samanta, S., Sahu, S., Raina, O. K., Gupta, S. C., Madhu, D. N., & Kumar, A. (2013). Prevalence of Toxocara species eggs in soil samples of public health importance in and around Bareilly, Uttar Pradesh, India. Veterinary World, 6(2), 87–90.

Tamási, G. (1995). Testing disinfectants for efficacy. Revue Scientifique et Technique, 14(1), 75–79.

Traversa, D., Frangipane di Regalbono, A., Di Cesare, A., La Torre, F., Drake, J., & Pietrobelli, M. (2014). Environmental contamination by canine geohelminths. Parasites and Vectors, 7, 67.

Umur, Ş. (1996). Gastro-intestinal nematodes and seasonal activities in sheep in the Kars district. Turkish Journal of Veterinary and Animal Sciences, 21(1), 57–65.

Volkov, F. A., & Simonov, A. P. (1977). Metod opredelenija ovocidnoj i larvocidnoj jeffektivnosti razlichnyh sredstv [Method for ovocidal and larvocidal efficiency determination of different agents]. Bulletin of the All-Union Order of the Red Banner of Labor K. I. Scriabin Institute of Helminthology, 19, 47–50 (in Russian).

Wharton, D. A. (1983). The production and functional morphology of helminth egg-shells. Parasitology, 86(4), 85–97.

Wilmsen, M. O., Silva, B. F., Bassetto, C. C., & Amarante, A. F. T. (2014). Gastrointestinal nematode infections in sheep raised in Botucatu, state of São Paulo, Brazil. Brazilian Journal of Veterinary Parasitology, 23(3), 348–354.

Worley, D. E., Barrett, R. E., & Knapp, S. E. (1980). Hosts and distribution of Capillaria bovis (Schnyder, 1906) in domestic and wild ruminants in Northwestern United States. Journal of Parasitology, 66(4), 695–696.

Yevstafieva, V. O., & Natiagla, I. V. (2017). Vyvchennja dezinvazijnyh vlastyvostej zasobiv dezinfekcii’ shhodo jajec’ gel’mintiv kurej rodu Capillaria [Study of deinvasive features of disinfection agents regarding chicken parasites eggs of Capillaria genus]. Messenger of Zhytomyr National Agroecology University, 1(1), 128–132 (in Ukrainian).

Zazharskyi, V. V., Davydenko, P., Kulishenko, O., Chumak, V., Kryvaya, A., Biben, I. A., Tishkina, N. M., Borovik, I., Boyko, O. O., & Brygadyrenko, V. V. (2018). Bactericidal, protistocidal and nematodicidal properties of mixtures of alkyldimethylbenzyl ammonium chloride, didecyldimethyl ammonium chloride, glutaraldehyde and formaldehyde. Regulatory Mechanisms in Biosystems, 9(4), 540–545.

Zhu, L., Dai, J. L., Yang, L., & Qiu, J. (2013). In vitro ovicidal and larvicidal activity of the essential oil of Artemisia lancea against Haemonchus contortus (Strongylida). Veterinary Parasitology, 195(1–2), 112–117.

Zółtowska, K., Białowas, K., & Lopieńska, E. (2000). Influence of zinc and lead ions on the development of eggs of Ascaris suum (Nematoda). Wiadomości Parazytologiczne, 46(4), 501–506.

Zvegintsova, N. S., Treus, M. Y., & Kuzmina, T. A. (2015). Helminths of saiga antelope (Saiga tatarica L.) in the “Askania Nova” Biosphere Reserve, Ukraine. Helminthologia, 52(3), 219–228.

Published
2020-03-10
How to Cite
Melnychuk, V. V., Yuskiv, I. D., & PishchalenkoM. А. (2020). Ovocidal action of glutaraldehyde and benzalkonium chloride mixture on Aonchotheca bovis (Nematoda, Capillariidae) embryogenesis . Regulatory Mechanisms in Biosystems, 11(2), 175-179. https://doi.org/10.15421/022026

Most read articles by the same author(s)