Effect of abiotic factors on sulfidogenic activity of bacteria Desulfuromonas sp.

Keywords: sulfur-reducing bacteria; hydrogen sulfide; elemental sulfur; polysulfide; еlectron donor; еlectron acceptor


Sulfur-reducing bacteria are promising agents for the development of new methods of wastewater treatment with the removal of ions of heavy metals and organic compounds. Study of the effect of various environmental factors on the growth and sulfidogenic activity of sulfur-reducing bacteria allows one to investigate the adaptability of these microorganisms to stress factors. The paper deals with the effect of рН, different concentrations of elemental sulfur, hydrogen sulfide and presence of various electron acceptors on the growth and sulfidogenic activity of bacteria Desulfuromonas sp. YSDS-3. The calculation of C/S ratio for sulfur-reducing bacteria Desulfuromonas sp. YSDS-3 was made, with the comparison with similar parameters of sulfate-reducing bacteria. In the medium with elemental sulfur, concentration of hydrogen sulfide increased with the concentration of elemental sulfur. Bacteria Desulfuromonas sp. YSDS-3 accumulated their biomass in the most effective way at the concentration of elemental sulfur of 10–100 mM. In the medium with polysulfide form of sulfur at the neutral pH, bacteria produced hydrogen sulfide and accumulated biomass the best. Hydrogen sulfide at the concentration of 3 mM did not inhibit the bacterial growth, but further increase in the hydrogen sulfide concentration inhibited the growth of bacteria. The bacteria did not grow at the hydrogen sulfide concentration of 25 mM and above. As the concentration of elemental sulfur and cell density increases, sulfidogenic activity of the bacteria grows. Presence of two electron acceptors (S and K2Cr2O7, S and MnO2, S and Fe (III)) did not affect the accumulation of biomass of the bacteria Desulfuromonas sp. YSDS-3. However, under such conditions the bacteria accumulated 1.5–2.5 times less hydrogen sulfide than in the test medium. After 12–24 h of cultivation, different concentrations of elemental sulfur had a significant effect on the sulfidogenic activity. However, during 3–16 days of cultivation, the percentage of effect of elemental sulfur concentration decreased to 31%, while the percentage of effect of cell density increased threefold. Presence in the medium of the electron acceptors (Cr (VI), MnO2, Fe (III)) alternative to elemental sulfur led to a significant decrease in the content of hydrogen sulfide produced by sulfur-reducing bacteria.


An, T. T., & Picardal, F. W. (2015). Desulfuromonas carbonis sp. nov., an Fe(III)-, S0- and Mn(IV)-reducing bacterium isolated from an active coalbed methane gas well. International Journal of Systematic and Evolutionary Mіcrobiology, 65(5), 1686‒1593.

Bertrand, J. C., Bonin, P., & Caumette, P. (2014). Environmental microbiology: Fundamentals and applications. Springer, Dordrecht.

Chayka, O., Peretyatko, T., Gudz, S., & Halushka, A. (2016). Vykorystannia fumaratu bakteriiamy Desulfuromonas sp. [Utilization of fumarate by sulfur-reducing bacteria Desulfuromonas sp.]. Visnyk of Dnipropetrovsk University, Biology, Ecology, 24, 332–337 (in Ukrainian).

Chayka, О., & Peretyatko, Т. (2018). Vidnovlennia spoluk shestyvalentnoho khromu i nitratu bakteriiamy Desulfuromonas sp. YSDS-3, vydilenykh z gruntu Yazivskoho rodovyshcha sirky [The reduction of hexavalent chromoium and nitrates by Desulforomonas YSDS-3, isolated from the soil of Yasiv sulfur mine]. Ecology and Noospherology, 29, 76–82 (in Ukrainian).

Crane, E. J. (2019). Sulfur-dependent microbial lifestyles: Deceptively flexible roles for biochemically versatile enzymes. Current Opinion in Chemical Biology, 49, 139–145.

Dorosh, L. S., Peretyatko, T. B., & Gudz, S. P. (2015). Zakonomirnosti vykorystannia sulfat- i nitrat-ioniv bakteriiamy Desulfomicrobium sp. CrR3 ta Desulfovibrio desulfuricans Ya-11 [The patterns of utilization of sulfate and nitrate ions by bacteria Desulfomicrobium sp. CrR3 and Desulfovibrio desulfuricans Ya-11]. Visnyk of Dnipropetrovsk University, Biology, Ecology, 6(2), 156‒160 (in Ukrainian).

Esther, J., Sukla, L. B., Pradhan, N., & Panda, S. (2015). Fe (III) reduction strategies of dissimilatory iron reducing bacteri. Korean Journal of Chemical Engineering, 32(1), 1–14.

Gudz, S. P., Peretyatko, T. B., Moroz, O. M., Hnatush, S. O., & Klym, I. R. (2011). Rehuliuvannia rivnia sulfativ, sirkovodniu ta vazhkykh metaliv u tekhnohennykh vodoimakh sulfatvinovliuvalnymy bakteriiamy [Regulation of sulfates, hydrogen sulfide and hard metals level in technogenic reservoirs by sulfate reducing bacteria]. Mikrobiologichny Zhurnal, 73(2), 33–38 (in Ukrainian).

Harris, D. S. (2003). Quantitative chemical analysis. Amazon, New York.

Kefeni, K. K., Msagati, T. A. M., & Mamba, B. B. (2017). Acid mine drainage: Prevention, treatment options, and resource recovery: A review. Journal of Cleaner Production, 151, 475–493.

Knoche, K. L., Renner, J. N., Gellett, W., Ayers, K. E., & Minteer, S. D. (2016). A self-sufficient nitrate ground water remediation system: Geobacter sulfurreducens microbial fuel cell fed by hydrogen from a water electrolyzer. Journal of the Electrochemical Society, 163, 651‒656.

Li, Y., Tang, K., Zhang, L., Zhao, Z., Xie, X., Chen, C. A., Wang, D., Jiao, N., & Zhang, Y. (2018). Coupled carbon, sulfur, and nitrogen cycles mediated by microorganisms in the water column of a shallow-water hydrothermal ecosystem. Fronties an Microbiology, 9, 1–13.

Lloyd, K. G., Edgcomb, V. P., Molyneaux, S. J., Molyneaux, S. J., Böer, S., Wirsen, C. O., Atkins, M. S., & Teske, A. (2005). Effects of dissolved sulfide, pH, and temperature on growth and survival of marine hyperthermophilic archaea. Appled and Environtal Microbiology, 71, 6383‒6387.

Logan, B. E., & Regan, J. M. (2006). Microbial fuel cells – challenges and applications. Environtal Science and Technology, 40, 5172–5180.

Lovley, R. D., Holmes, D. E., & Nevin, K. P. (2004). Dissimilatory Fe (III) and Mn (IV) reduction. Advances in Microbial Physiology, 49, 219‒286.

Miller, S. R., & Bebout, B. M. (2004). Variation in sulfide tolerance of photosystem II in phylogenetically diverse cyanobacteria from sulfidic habitats. Appled and Environtal Microbiology, 70, 736–744.

Moroz, O. M., Hnatush, S. O., Tarabas, O. V., Bohoslavets, C. I., & Yavorska, G. V. (2018). Sulfidohenna aktyvnist sulfatvidnovnykh ta sirkovidnovnykh bakterij za vplyvu spoluk metaliv [Sulfidogenic activity of sulfate and sulfur reducing bacteria under the influence of metal compounds]. Biosystems Diversity, 26, 3‒10 (in Ukrainian).

Owlad, M., Aroua, M. K., Ashri, W., Daud, W., & Baroutian, S. (2009). Removal of hexavalent chromium-contaminated water and wastewater: A review. Water, Air, and Soil Pollution, 200, 59–77.

Postgate, J. R. (1984). The sulfate-reducing bacteria. 2nd ed. Cambridge University, Cambridge.

Qiu, Y. Y., Guo, J. H., Zhang, L., Chen, G. H., & Jiang, F. (2017). A high-rate sulfidogenic process based on elemental sulfur reduction: Cost-effectiveness evaluation and microbial community analysis. Biochemical Engineering Journa, 128, 26–32.

Reis, M. A., Almeida, J. S., Lemos, P. C., & Carrondo, M. J. (1992). Effect of hydrogen sulfide on growth of sulfate reducing bacteria. Biotechnology and Bioengineering, 40, 593–600.

Richter, K., Schicklberger, M., & Gescher, J. (2012). Dissimilatory reduction of extracellular electron acceptors in anaerobic respiration. Appled and Environtal Microbiology, 4, 913–921.

Smith, W. L., & Gadd, G. M. (2000). Reduction and precipitation of chromate by mixed culture sulphate reducing bacterial biofilms. Journal of Appled Microbiology, 88, 983–991.

Sugiyama, M. (2002). Incassignee. Reagent composition for measuring hydrogen sulfide and method for measuring hydrogen. United States Patent 6,340,596 B1. 2002 Jan 22.

Suna, R., Li, Y., Lin, N., Ou, C., & Wang, X. (2020). Removal of heavy metals using a novel sulfidogenic AMD treatment system with sulfur reduction: Configuration, performance, critical parameters and economic analysis. Environtal Internation, 136, 1‒9.

Vasyliv, O. M., Maslovska, O. D., Ferensovych, Y. P., Bilij, O. P., & Hnatush, S. O. (2015). Interconnection between tricarboxylic acid cycle and energy generation in microbial fuel cell performed by Desulfuromonas acetoxidans IMV B-7384. Proceedings SPIE, 9493, 94930J-1‒7.

Verkholiak, N. S., & Peretyatko, T. B. (2018). Morfofiziolohichni vlastyvosti sulfatvidnovliuvalnykh bakterii, vydilenykh iz systemy ochyshchennia stichnykh vod m. Lvova [Morphophysiological properties of sulfate-reducing baсteria isolated from the system of Lviv wastewater treatment]. Microbiology and Biotechnology, 4, 19–29 (in Ukrainian).

Verkholiak, N. S., & Peretyatko, T. B. (2019). Destruktsiia toluenu ta ksylenu sulfatvidnovliuvalnymy bakteriiamy [Destruction of toluene and xylene by sulfatе-reducing bacteri]. Ecology and Noospherology, 30(2), 95–100 (in Ukrainian).

Zhang, Z., Sun, R., Liang, S., Chen, G.-H., & Jiang, F. (2018). Self-accelerating sulfurreduction via polysulfide to realize a high-rate sulfidogenic reactor for wastewater treatment. Water Research, 130, 161–167.

How to Cite
СhaіkaO. M., & Peretyatko, T. B. (2020). Effect of abiotic factors on sulfidogenic activity of bacteria Desulfuromonas sp . Regulatory Mechanisms in Biosystems, 11(2), 170-174. https://doi.org/10.15421/022025