Simultaneous and sequential influence of metabolite complexes of Lactobacillus rhamnosus and Saccharomyces boulardii and antibiotics against poly-resistant Gram-negative bacteria

Keywords: sacharomycetes; lactobacteria; potentioning of the action of antibiotics; increase in the susceptibility of bacteria


For the first time the poly-resistant strains of Gram-negative microorganisms were studied for the sensitivity to combined simultaneous and sequential influence of metabolic complexes of Lactobacillus rhamnosus GG and Saccharomyces boulardii, obtained by the author’s method without using the growth media, with antibiotics. The synergic activity of antibacterial preparations and metabolic complexes of L. rhamnosus GG and S. boulardii were studied using modified disk-diffusive method of Kirby-Bauer. During the sequential method of testing (at first the microorganisms were incubated with structural components and metabolites, then their sensitivity to the antibacterial preparations was determined), we observed increase in the diameters of the zones of growth inhibition of Pseudomonas aeruginosa PR to the typical antibiotics (gentamicin, amіcyl, ciprofloxacin, сefotaxime) and non-typical (lincomycin, levomycetin) depending on the tested combinations. Acinetobacter baumannii PR exhibited lower susceptibility: growth inhibition was seen for the combination with ciprofloxacin, сefotaxime, levomycetin. Susceptibility of Lelliottia amnigena (Enterobacter amnigenus) PR increased to levofloxacin, lincomycin. The zones of growth inhibition of Klebsiella pneumoniae PR increased to gentamicin, amіcyl, tetracycline, сeftriaxone. Maximum efficiency was determined during sequential combination of antibiotics with separate metabolic complexes of L. rhamnosus and S. boulardii, and also their combination (to 15.2, 20.2 and 15.4 mm respectively) compared with their simultaneous use (to 12.2, 15.2 and 13.0 mm respectively) for all the tested poly-resistant pathogens, regardless of the mechanism of action of antibacterial preparation. Metabolic complexes of L. rhamnosus GG and S. boulardii, due to increase in the susceptibility of microorganisms, can decrease the therapeutic concentration of antibiotic, slow the probability of the development of resistance of microorganisms, and are therefore promising candidates for developing “accompanying medications” to antibiotics and antimicrobial preparations of new generation.


Andrzejczuk, S., Kosikowska, U., Chwiejczak, Е., Stępień-Pyśniak, D., & Malm, А. (2019). Prevalence of resistance to β-lactam antibiotics and bla genes among commensal Haemophilus parainfluenzae isolates from respiratory microbiota in Poland. Microorganisms, 7(10), е427.

Arqués, L. (2011). Combined effect of reuterin and lactic acid bacteria bacteriocins on the inactivation of food-borne pathogens in milk. Food Control, 22(3–4), 457–461.

Atlas, R. (2010). Handbook of microbiological media. Boca Raton, London, New York.

Berditsch, M., Jäger, T., Strempel, N., Schwartz, T., Overhage, J., & Ulrich, A. (2015). Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 59(9), 5288–5296.

Bolosov, I., Kalashnikov, A., Panteleev, P., & Ovchinnikova, T. (2017). Analysis of synergistic effects of antimicrobial peptide arenicin-1 and conventional antibiotics. Bulletin of Experimental Biology and Medicine, 162(6), 765–768.

Chaudhary, A. (2016). A review of global initiatives to fight antibiotic resistance and recent antibiotics’ discovery. Acta Pharmaceutica Sinica B, 6, 552–556.

Daba, H., & Saidi, S. (2015). Detection of bacteriocin-producing lactic acid bacteria from milk in various farms in North-East Algeria by a new procedure. Agronomy Research, 13, 907–918.

De Keersmaecker, S. C. J. (2006). Strong antimicrobial activity of Lactobacillus rhamnosus GG against Salmonella typhimurium is due to accumulation of lactic acid. FEMS Microbiology Letters, 259(1), 89–96.

Dosler, S., & Gerceker, A. (2012). In vitro activities of antimicrobial cationic pep­tides; melittin and nisin, alone or in combination with antibiotics against Gram-positive bacteria. Journal of Chemotherapy, 24(3), 137–143.

Draper, L., Cotter, P., Hill, C., & Ross, R. (2013). The two peptide lantibiotic lacticin 3147 acts synergistically with polymyxin to inhibit Gram negative bacteria. BMC Microbiology, 13, 212–220.

Elbediwi, М., Li, Y., Paudyal, N., Pan, Н., Li, Н., Xie, S., Rajkovic, А., Feng, Y., Fang, W., Rankin, S., & Yue, М. (2019). Global burden of colistin-resistant bacteria: Mobilized colistin resistance genes study (1980–2018). Microorganisms, 7(10), 461–479.

Field, D., O' Connor, R., Cotter, P., Ross, R., & Hill, C. (2016). In vitro activities of nisin and nisin derivatives alone and in combination with antibiotics against Staphylococcus biofilms. Frontiers in Microbiology, 7, е508.

Field, D., Seisling, N., Cotter, P., Ross, R., & Hill, C. (2016). Synergistic nisin-polymyxin combinations for the control of Pseudomonas biofilm formation. Frontiers in Microbiology, 26(7), е1713.

Frickmann, H., Klenk, C., Warnke, P., Redanz, S., & Podbielski, A. (2018). Influen­ce of probiotic culture supernatants on in vitro biofilm formation of staphylococci. European Journal of Microbiology and Immunology, 8(4), 119–127.

Goyal, N., & Kannan, К. (2018). Inhibition of Salmonella typhimurium by cell free supernatant of probiotic Lactobacillus rhamnosus GG. International Journal of Probiotics and Prebiotics, 13(1), 37–44.

Hanchi, H., Hammami, R., Gingras, H., Kourda, R., Bergeron, M., Ben Hamida, J., Ouellette, M., & Fliss, I. (2017). Inhibition of MRSA and of Clostridium difficile by durancin 61A: Synergy with bacteriocins and antibiotics. Future Microbiology, 12, 205–212.

Isayenko, O. (2019). Protydyfteriyni vlastyvosti strukturno-metabolitnykh kompleksiv probiotychnykh shtamiv laktobakteriy i sakharomitsetiv u testakh in vitro ta in vivo [Anti-diphtheria properties of structural-metabolites complexes of Lactobacillus and Saccharomyces probiotic strains]. Fiziologichnyj Zhurnal, 65(6), 51–61 (in Ukrainian).

Isayenko, O. (2019). Synergistic activity of filtrates Lactobacillus rhamnosus GG and Saccharomyces boulardii and antibacterial preparations against Corynebacterium spp. Regulatory Mechanisms in Biosystems, 10(4), 245–250.

Isayenko, O., Knysh, O., Fal’ko, O., Prokopyuk, V., & Prokopyuk, O. (2019). Tsytotoksychnost’ strukturno-metabolitnykh kompleksiv Lactobacillus rhamnosus GG ta Saccharomyces boulardii [Cytotoxicity structural-metabolitic complexes of Lactobacillus rhamnosus GG and Saccharomyces boulardii]. Fiziologichnyj Zhurnal, 65(5), 35–41 (in Ukrainian).

Kaktcham, P. M., Zambou, N. F., Atiya, A., & Fozia, A. (2012). Characterization of bacteriocin produced by Lactobacillus rhamnosus 1K isolated from traditionally fermented milk in the western highlands region of Cameroon. International Journal of Biology, 4(2), 149–155.

Kaktcham, P. M., Zambou, N. F., Fonteh, A. F., Sieladie, D. V., & Tchouanguep, M. F. (2011). Characterization of bacteriocin produced by Lactobacillus rhamnosus 1K isolated from traditionally fermented milk in the western highlands region of Cameroon. New York Science Journal, 4(8), 121–128.

Koulenti, D., Xu, E., Song, A., Sum Mok, I. Y., Karageorgopoulos, D. E., Armaganidis, A., Tsiodras, S., & Lipman, J. (2020). Emerging treatment options for infections by multidrug-resistant gram-positive microorganisms. Microorga­nisms, 8(2), е191.

Lainson, J., Daly, S., Triplett, K., Johnston, S., Hall, P., & Diehnelt, C. (2017). Synthetic antibacterial peptide exhibits synergy with oxacillin against MRSA. ACS Medicinal Chemistry Letters, 8, 853–857.

Lebel, G., Piché, F., Frenette, M., Gottschalk, M., & Grenier, D. (2013). Antimic­robial activity of nisin against the swine pathogen Streptococcus suis and its synergistic interaction with antibiotics. Peptides, 50, 19–23.

Lebel, G., Vaillancourt, K., Frenette, M., Gottschalk, M., & Grenier, D. (2014). Suicin 90-1330 from a nonvirulent strain of Streptococcus suis: A nisin-related lantibiotic active on gram-positive swine pathogens. Applied and Environmental Microbiology, 80(17), 5484–5492.

Mathur, H., O'Connor, P. M., Hill, C., Cotter, P. D., & Ross, R. P. (2013). Analysis of anti-Clostridium difficile activity of thuricin CD, vancomycin, metronidazole, ramoplanin, and actagardine, both singly and in paired combinations. Antimicrobial Agents and Chemotherapy, 57(6), 2882–2886.

Montiel, R. (2015). Reuterin, lactoperoxidase, lactoferrin and high hydrostatic pres­sure on the inactivation of food-borne pathogens in cooked ham. Food Control, 51, 122–128.

Palchykov, V. A., Zazharskyi, V. V., Brygadyrenko, V. V., Davydenko, P. O., Kulishenko, O. M., Borovik, I. V., Chumak, V., Kryvaya, A., & Boyko, O. O. (2019). Bactericidal, protistocidal, nematodicidal properties and chemical composition of ethanol extract of Punica granatum peel. Biosystems Diversity, 27(3), 300–306.

Perdikouri, Е., Arvaniti, К., Lathyris, D., Kiouti, F., Siskou, Е., Haidich, А., & Papandreou, С. (2019). Infections due to multidrug-resistant bacteria in oncological patients: Insights from a five-year epidemiological and clinical analysis. Microorganisms, 7(9), е277.

Pizzolato-Cezar, L., Okuda-Shinagawa, N., & Machini, M. (2019). Combinatory therapy antimicrobial peptide-antibiotic to minimize the ongoing rise of resistance. Frontiers in Microbiology, 10, е1703.

Ribeiro, S., de la Fuente-Núñez, C., Baquir, B., Faria-Junior, C., Franco, O., & Hancock, R. (2015). Antibiofilm peptides increase the susceptibility of carbapenemase-producing Klebsiella pneumoniae clinical isolates to β-lactam antibiotics. Antimicrobial Agents and Chemotherapy, 59(7), 3906–3912.

Richardson, L. (2017). Understanding and overcoming antibiotic resistance. PLoS Biology, 15(8), e2003775.

Sahib, F., Nawfal, H. Aldujaili, N., & Alrufae, M. (2017). Biosynthesis of silver nanoparticles using saccharomyces boulardii and study their biological activities. European Journal of Pharmaceutical and Medical Research, 4(9), 65–74.

Sharma, A., & Srivastava, S. (2014). Anti-Candida activity of two-peptide bacteriocins, plantaricins (Pln E/F and J/K) and their mode of action. Fungal Biology, 118(2), 264–275.

Sharma, J., & Chauhan, D. S. (2014). Inhibition of Pseudomonas aeruginosa by antibiotics and probiotics combinations – in vitro study. European Journal of Experimental Biology, 4(6), 10–14.

Sharma, J., & Chauhan, D. S. (2015). In vitro study on the role of probiotic strains in potentiation of antimicrobial activity against Staphylococcus aureus. International Journal of Pharmacy and Life Sciences, 6(1), 4161–4165.

Sharma, J., Chauhan, D. S., & Goyal, A. (2014). Enhancement of antimicrobial activity of antibiotics by probiotics against Escherichia coli - an in vitro study. Advances in Applied Science Research, 5(6), 14–18.

Stefania, D., Miranda, P., Diana, М., Claudia, Z., Pagiotti, R., & Pietrella, D. (2017). Antibiofilm and antiadhesive activities of different synbiotics. Journal of Probiotics and Health, 5(3), 182–191.

Tabbene, O., Azaiez, S., Di Grazia, A., Karkouch, I., Ben Slimene, I., Elkahoui, S., Alfeddy, M. N., Casciaro, B., Luca, V., Limam, F., & Mangoni, M. L. (2016). Bacillomycin D and its combination with amphotericin B: Promising antifungal compounds with powerful antibiofilm activity and wound-healing potency. Journal of Applied Microbiology, 120(2), 289–300.

Tong, Z., Zhang, Y., Ling, J., Ma, J., Huang, L., & Zhang, L. (2014). An in vitro study on the effects of nisin on the antibacterial activities of 18 antibiotics against Enterococcus faecalis. PLoS One, 9(2), e89209.

Vaillancourt, K., LeBel, G., Frenette, M., Gottschalk, M., & Grenie, D. (2015). Suicin 3908, a new lantibiotic produced by a strain of Streptococcus suis serotype 2 isolated from a healthy carrier pig. PLoS One, 10(2), e0117245.

How to Cite
Isayenko, O. Y., Knysh, O. V., Kotsar, O. V., Ryzhkova, T. N., & Dyukareva, G. I. (2020). Simultaneous and sequential influence of metabolite complexes of Lactobacillus rhamnosus and Saccharomyces boulardii and antibiotics against poly-resistant Gram-negative bacteria . Regulatory Mechanisms in Biosystems, 11(1), 139-145.

Most read articles by the same author(s)