Synergistic activity of filtrates of Lactobacillus rhamnosus and Saccharomyces boulardii and antibacterial preparations against Corynebacterium spp.

Keywords: biologically active substances; disintegrates and metabolites of lactobacteria; saccharomycetes with antibiotics; sensitivity of Corynebacterium spp.; potentiation of antibacterial preparations.

Abstract

We present the results of the first study of the combined influence of the biologically active substances Lactobacillus rhamnosus GG ATCC 53103 and Saccharomyces boulardii, obtained by the author’s method, and antibacterial agents on Corynebacterium spp. The first area of research was the study of increasing the sensitivity of toxigenic microorganisms to antimicrobial drugs due to the consecutive effects of the structural components and metabolites of L. rhamnosus GG and S. boulardii and antibacterial drugs on Corynebacterium spp. tox+. The greatest increase in the sensitivity of test-cultures of corynebacteria to penicillin (by 19.4 mm), imipenem (by 15.0 mm), vancomycin (by 12.0 mm), gentamicin (by 11.0 mm), ciprofloxacin (by 9.8 mm), erythromycin (by 9.6 mm), cefotaxime (by 9.5 mm) occurred due to the products of lactobacteria and a combination of metabolites of lactobacteria and saccharomycetes. The second area of research was the study of the synergic activity of substances L. rhamnosus GG and S. boulardii and traditional antibacterial drugs manifested by their simultaneous effect on Corynebacterium spp. Maximum potentiation of azithromycin (by 4.6 mm), erythromycin (by 4.5 mm), cefotaxime (by 2.2 mm), ceftriaxone (by 1.6 mm) and ampicillin (by 1.0 mm) relative to corynebacteria was also observed under the influence of lactobacteria metabolites and a combination of lactobacteria and saccharomycetes metabolites. Different degrees of manifestation of the combined action of biologically active substances L. rhamnosus GG and S. boulardii with antibiotics were determined, which depended on the selected combinations, the method of influence on the microorganism, the individual sensitivity of the test-cultures, the activity of the test filtrates and the initial concentration of the producers used to obtain the products of vital activity of lactobacteria and saccharomyces. The presented complexes of structural components and metabolites of L. rhamnosus GG and S. boulardii, obtained without the use of traditional nutrient media, by increasing the bioavailability of pathogenic pathogens can reduce the required concentration of the antibiotic, continuing their use, and suspend the likelihood of pathogens developing resistance to microorganisms. This makes them promising candidates both for the development of "accompaniment-preparations" for antibiotics for the additional therapy of infectious diseases of different etiology, and for the creation of a new direction of antimicrobial agents with multifunctional capabilities. Synergistic activity of filtrates L. rhamnosus GG and S. boulardii and antibacterial preparations against Corynebacterium spp.

References

Atlas, R. (2010). Handbook of microbiological media. Boca Raton, London, New York.

Berditsch, M., Jäger, T., Strempel, N., Schwartz, T., Overhage, J., & Ulrich, A. (2015). Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 59(9), 5288–5296.

Bolosov, I., Kalashnikov, A., Panteleev, P., & Ovchinnikova, T. (2017). Analysis of synergistic effects of antimicrobial peptide arenicin-1 and conventional antibiotics. Bulletin of Experimental Biology and Medicine, 162(6), 765–768.

Cassone, M., & Otvos, L. (2010). Synergy among antibacterial peptides and between peptides and small-molecule antibiotics. Expert Review of Anti-infective Therapy, 8(6), 703–716.

Chaudhary, A. (2016). A review of global initiatives to fight antibiotic resistance and recent antibiotics’ discovery. Acta Pharmaceutica Sinica B, 6, 552–556.

Corbett, D., Wise, A., Langley, T., Skinner, K., Trimby, E., Birchall, S., Dorali, A., Sandiford, S., Williams, J., Warn, P., Vaara, M., & Lister, T. (2017). Potentiation of antibiotic activity by a novel cationic peptide: Potency and spectrum of activity of SPR741. Antimicrobial Agents and Chemotherapy, 61, e00200-17.

Cudic, M., & Otvos, L. (2002). Intracellular targets of antibacterial peptides. Current Drug Targets, 3(2), 101–106.

Dillon, N., Holland, M., Tsunemoto, H., Hancock, B., Cornax, I., Pogliano, J., Sakoulas, G., & Nizet, V. (2019). Surprising synergy of dual translation inhibition vs. Acinetobacter baumannii and other multidrug-resistant bacterial pathogens. EBioMedicine, 46, 193–201.

Dosler, S., & Gerceker, A. A. (2011). In vitro activities of nisin alone or in combination with vancomycin and ciprofloxacin against methicillin-resistant and methicillin-susceptible Staphylococcus aureus strains. Chemotherapy, 57(6), 511–516.

Ferrer-Espada, R., Shahrour, H., Pitts, B., Stewart, P. S., Sánchez-Gómez, S., & Martínez-de-Tejada, G. (2019). A permeability-increasing drug synergizes with bacterial efflux pump inhibitors and restores susceptibility to antibiotics in multi-drug resistant Pseudomonas aeruginosa strains. Scientific Reports, 9(1), 3452.

Field, D., Seisling, N., Cotter, P. D., Ross, R. P., & Hill, C. (2016). Synergistic nisin-polymyxin combinations for the control of Pseudomonas biofilm formation. Frontiers in Microbiology, 7, 1713.

Florin, T., Maracci, C., Graf, M., Karki, P., Klepacki, D., Berninghausen, O., Beckmann, R., Vázquez-Laslop, N., Wilson, D., Rodnina, M., & Mankin, A. (2017). An antimicrobial peptide that inhibits translation by trapping release factors on the ribosome. Nature Structural and Molecular Biology, 24(9), 752–757.

García-Fuente, A., Vázquez, F., Viéitez, J. M., García Alonso, F. J., Martín, J. I., & Ferrer, J. (2018). CISNE: An accurate description of dose-effect and synergism in combination therapies. Scientific Reports, 8(1), 4964.

Il’yashenko, M., Tarasova, G., & Guseva, A. (2012). Endogennyye antimikrobnyye peptidy i ikh kliniko-patogeneticheskaya znachimost’ pri vospalitel’nykh zabolevaniyakh kishechnika [Endogenic antimicrobial peptides and their clinical-pathogenetic significance in inflammatory diseases of the intestine]. Modern Problems of Science and Education, 2 (in Russian).

Isayenko, O., Knysh, O., Kotsar, O., Ryzhkova, T., & Dyukareva, G. (2019). Evaluation of anti-microbial activity of filtrates of Lactobacillus rhamnosus and Saccharomyces boulardii against antibiotic-resistant gram-negative bacteria. Regulatory Mechanisms in Biosystems, 10(2), 245–250.

Isayenko, O., Knysh, O., Babych, Y., Ryzhkova, T., & Dyukareva, G. (2019). Effect of disintegrates and metabolites of Lactobacillus rhamnosus and Saccharomyces boulardii on biofilms of antibiotic resistant conditionally pathogenic and pathogenic bacteria. Regulatory Mechanisms in Biosystems, 10(1), 3–8.

Isajenko, O., Knysh, O., Fal’ko, O., Prokopyuk, V., & Prokopyuk, O. (2019). Tsytotoksychnosti strukturno-metabolitnykh kompleksiv Lactobacillus rhamnosus GG ta Saccharomyces boulardii [Cytotoxicity structural-metabolitic complexes of Lactobacillus rhamnosus GG and Saccharomyces boulardii]. Fiziolohichnyi Zhurnal, 65(5), 35–41 (in Ukrainian).

Ismeeal, M. C., Ibrahim, K. M., & Al-Malikey, M. K. (2013). The effect of surlactin produced by Lactobacillus acidophilus on eye infectious bacteria in rabbits. Baghdad Science Journal, 10(1), 133–143.

Jing, H., Charles, G., William, C., & Wimley. (2015). A lack of synergy between membrane-permeabilizing cationic antimicrobial peptides and conventional antibiotics. Biochimica et Biophysica Acta, 1848(1), 8–15.

Lainson, J. C., Daly, S. M., Triplett, K., Johnston, S. A., Hall, P. R., & Diehnelt, C. W. (2017). Synthetic antibacterial peptide exhibits synergy with oxacillin against MRSA. ACS Medicinal Chemistry Letters, 8(8), 853–857.

Lewies, A., Du Plessis, L., & Wentzel, J. (2018). Antimicrobial peptides: The achilles’ heel of antibiotic resistance? Probiotics and Antimicrobial Proteins, 11, 370–381.

Li, X.-Z., Plésiat, P., & Nikaido, H. (2015). The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clinical Microbiology Reviews, 28 (2), 337–418.

Lin, L., Nonejuie, P., Munguia, J., Hollands, A., Olson, J., Dam, Q., Kumaraswamy, M., Rivera, H., Corriden, R., Rohde, M., Hensler, M., Burkart, M., Pogliano, J., Sakoulas, G., & Nizet, V. (2015). Azithromycin synergizes with cationic antimicrobial peptides to exert bactericidal and therapeutic activity against highly multidrug-resistant gram-negative bacterial pathogens. EBioMedicine, 2(7), 690–698.

Mardirossian, M., Grzela, R., Giglione, C., Meinnel, T., Gennaro, R., Mergaert, P., & Scocchi, M. (2014). The host antimicrobial peptide bac71-35binds to bacterial ribosomal proteins and inhibits protein synthesis. Cell Chemical Biology, 21(12), 1639–1647.

Metelev, M., Osterman, I. A., Ghilarov, D., Khabibullina, N. F., Yakimov, A., Shabalin, K., Utkina, I., Travin, D. Y., Komarova, E. S., Serebryakova, M., Artamonova, T., Khodorkovskii, M., Konevega, A. L., Sergiev, P. V., Severinov, K., & Polikanov, Y. S. (2017). Klebsazolicin inhibits 70S ribosome by obstructing the peptide exit tunnel. Nature Chemical Biology, 13, 1129–1136.

Mogi, T., & Kita, K. (2009). Gramicidin S and polymyxins: The revival of cationic cyclic peptide antibiotics. Cellular and Molecular Life Sciences, 66(23), 3821–3826.

Morici, P., Florio, W., Rizzato, C., Ghelardi, E., Tavanti, A., Rossolini, G. M., & Lupetti, A. (2017). Synergistic activity of synthetic N-terminal peptide of human lactoferrin in combination with various antibiotics against carbapenem-resistant Klebsiella pneumoniae strains. European Journal of Clinical Microbiology and Infectious Diseases, 36(10), 1739–1748.

Mulani, M., Kamble, E., Kumkar, S. N., Tawre, M. S., & Pardesi, K. R. (2019). Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Frontiers in Microbiology, 10, 539.

Nagarajan, D., Roy, N., Kulkarni, O., Nanajkar, N., Datey, A., Ravichandran, S., Thakur, C. S., Aprameya, I. V., Sarma, S. P., Chakravortty, D., & Chandra, N. (2019). Ω76: A designed antimicrobial peptide to combat carbapenem- and tigecycline-resistant Acinetobacter baumannii. Science Advances, 5(7), 1946.

Patrzykat, A., Friedrich, C. L., Zhang, L., Mendoza, V., & Hancock, R. E. (2002). Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrobial Agents and Chemotherapy, 46(3), 605–614.

Pfalzgraff, A., Brandenburg, K., & Weindl, G. (2018). Antimicrobial peptides and their therapeutic potential for bacterial skin infections and wounds. Frontiers in Pharmacology, 9, 281.

Pizzolato-Cezar, L., Okuda-Shinagawa, N., & Machini, M. (2019). Combinatory therapy antimicrobial peptide-antibiotic to minimize the ongoing rise of resistance. Frontiers in Microbiology, 10, 1703.

Pletzer, D., Mansour, S. C., & Hancock, R. E. W. (2018). Synergy between conventional antibiotics and anti-biofilm peptides in a murine, sub-cutaneous abscess model caused by recalcitrant ESKAPE pathogens. PLoS Pathogens, 14(6), e1007084.

Pollini, S., Brunetti, J., Sennati, S., Rossolini, G., Bracci, L., & Pini, A. (2017). Synergistic activity profile of an antimicrobial peptide against multidrug-resistant and extensively drug-resistant strains of gram-negative bacterial pathogens. Journal of Peptide Science, 23, 329–333.

Reffuveille, F., de la Fuente-Núñez, C., Mansour, S., & Hancock, R. E. W. (2014). A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrobial Agents and Chemotherapy, 58, 5363–5371.

Ribeiro, S. M., de la Fuente-Núñez, C., Baquir, B., Faria-Junior, C., Franco, O. L., & Hancock, R. E. (2015). Antibiofilm peptides increase the susceptibility of carbapenemase-producing Klebsiella pneumoniae clinical isolates to β-lactam antibiotics. Antimicrobial Agents and Chemotherapy, 59(7), 3906–3912.

Richardson, L. (2017). Understanding and overcoming antibiotic resistance. PLoS Biology, 15(8), e2003775.

Satpute, S., Kulkarni, G., Banpurkar, A., & Banat, I. M. (2016). Biosurfactant’s from Lactobacteria species: Properties, challenges and potential biomedical applications: Biosurfactant’s from Lactobacteria species. Journal of Basic Microbiology, 56(11), 1140–1158.

Sharma, J., & Chauhan, D. S. (2014). Inhibition of Pseudomonas aeruginosa by antibiotics and probiotics combinations – In vitro study. European Journal of Experimental Biology, 4(6), 10–14.

Sharma, J., & Chauhan, D. S. (2015). In vitro study on the role of probiotic strains in potentiation of antimicrobial activity against Staphylococcus aureus. International Journal of Pharmacy and Life Sciences, 6(1), 4161–4165.

Sharma, J., Chauhan, D. S., & Goyal, A. (2014). Enhancement of antimicrobial activity of antibiotics by probiotics against Escherichia coli – An in vitro study. Advances in Applied Science Research, 5(6), 14–18.

Tabbene, O., Azaiez, S., Di Grazia, A., Karkouch, I., Ben Slimene, I., Elkahoui, S., Alfeddy, M. N., Casciaro, B., Luca, V., Limam, F., & Mangoni, M. L. (2016). Bacillomycin D and its combination with amphotericin B: Promising antifungal compounds with powerful antibiofilm activity and wound-healing potency. Journal of Applied Microbiology, 120(2), 289–300.

Tegos, G. P., Haynes, M., Strouse, J., Khan, M. T., Bologa, C. G., Oprea, T. I., & Sklar, L. A. (2011). Microbial efflux pump inhibition: Tactics and strategies. Current Pharmaceutical Design, 17(13), 1291–1302.

Thomsen, T., Mojsoska, B., Cruz, J., Donadio, S., Jenssen, H., Løbner-Olesen, A., & Rewitz, K. (2016). The lantibiotic NAI-107 efficiently rescues Drosophila melanogaster from infection with methicillin-resistant Staphylococcus aureus USA300. Antimicrobial Agents and Chemotherapy, 60(9), 5427–5436.

Tong, Z., Zhang, Y., Ling, J., Ma, J., Huang, L., & Zhang, L. (2014). An in vitro study on the effects of nisin on the antibacterial activities of 18 antibiotics against Enterococcus faecalis. PLoS One, 9(2), e89209.

Uppu, D., Konai, M. M., Sarkar, P., Samaddar, S., Fensterseifer, I., Farias-Junior, C., Krishnamoorthy, P., Shome, B. R., Franco, O. L., & Haldar, J. (2017). Membrane-active macromolecules kill antibiotic-tolerant bacteria and potentiate antibiotics towards Gram-negative bacteria. PLoS One, 12(8), e0183263.

Van Bambeke, F., Pagès, J., & Lee, V. J. (2006). Inhibitors of bacterial efflux pumps as adjuvants in antibiotic treatments and diagnostic tools for detection of resistance by efflux. Recent Patents on Anti-Infective Drug Discovery, 1(2), 157–175.

Volyanskiy, Y., Biryukova, S., Shapovalova, O., Stegniy, B., Manina, Z., & Gorbatenko, S. (2014). Korinebakterii. Rol’ v patologii cheloveka i zhivotnykh [Corynebacterium. Role in human and animal pathology]. FOP Brovin, Kharkov (in Ukrainian).

Xu, X., Xu, L., Yuan, G., Wang, Y., Qu, Y., & Zhou, M. (2018). Synergistic combination of two antimicrobial agents closing each other’s mutant selection windows to prevent antimicrobial resistance. Scientific Reports, 8(1), 7237.

Yasir, М., Dutta, D., & Willcox, M. D. P. (2019). Comparative mode of action of the antimicrobial peptide melimine and its derivative Mel4 against Pseudomonas aeruginosa. Scientific Reports, 9(1), 7063.

Wang, S., Wang, Q., Zeng, X., Ye, Q., Huang, S., Yu, H., Yang, T., & Qiao, S. (2017). Use of the antimicrobial peptide sublancin with combined antibacterial and immunomodulatory activities to protect against methicillin-resistant Staphylococcus aureus infection in mice. Journal of Agricultural and Food Chemistry, 65(39), 8595–8605.

Wenzel, M., Chiriac, A., Otto, A., Zweytick, D., May, C., Schumacher, C., Gust, R., Albada, H., Penkova, M., Krämer, U., Erdmann, R., Metzler-Nolte, N., Straus, S. K., Bremer, E., Becher, D., Brötz-Oesterhelt, H., Sahl, H., & Bandow, J. (2014). Small cationic antimicrobial peptides delocalize peripheral membrane proteins. Proceedings of the National Academy of Sciences, 111(14), 409–418.

World Health Organization (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. WHO.

World Health Organization (2017). Antibacterial agents in clinical development: An analysis of the antibacterial clinical development pipeline, including Mycobacterium tuberculosis. WHO.

World Health Organization (2018). 2018: Ten threats to human health this year. WHO.

World Health Organization (2018). Weekly epidemiological bulletin, 23(93), 329–344.

Wu, X., Li, Z., Li, X., Tian, Y., Fan, Y., & Yu, C. (2017). Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Drug Design, Development and Therapy, 11, 939–946.

Zabawa, T. P., Pucci, M. J., Parr, T. R., & Lister, T. (2016). Treatment of gram-negative bacterial infections by potentiation of antibiotics. Current Opinion in Microbiology, 33, 7–12.

Published
2019-11-21
How to Cite
Isayenko , O. Y. (2019). Synergistic activity of filtrates of Lactobacillus rhamnosus and Saccharomyces boulardii and antibacterial preparations against Corynebacterium spp . Regulatory Mechanisms in Biosystems, 10(4), 445-456. https://doi.org/10.15421/021966