Manifestations of allostatic load in residents of radiation contaminated areas aged 18–24 years

Keywords: Chornobyl accident; low doses of radiation; emotional stress; immune-neuroendocrine complex; biomarkers; immunosenescence; CD4 /CD8 .


We studied the features of allostatic load (AL) in 100 students aged 18–24 years old who, from birth to adulthood, lived in the territories assigned to the IV radiation zone after the Chornobyl accident (density of soil contamination by isotopes 137Cs 3.7–18.5∙104 Bq/m2) and underwent prolonged exposure to small doses of ionizing radiation. The examined students did not have any clinical signs of the immune-neuroendocrine system dysfunction. 50 people had signs of vegetative-vascular dystonia syndrome (VVD), 48 had signs of moderate hyperthyroidism and 21 had signs of moderate hypothyroidism. During the examination session, as a factor of additional psycho-emotional load, in 66 of the examined the immunoregulatory index CD4+/CD8+ went below the lower limit of the homeostatic norm, in 62 of the examined low density lipoprotein cholesterol (LDL-C) exceeded the upper level. The relative risk (RR) and attributable risk (AR) of the participation of potential secondary factors of allostatic load formation in CD4+/CD8+ immunoregulatory index going below the lower limit were calculated. The presence of statistically significant relative risk of participation in the formation of suppression of the index CD4+/CD8+: the state of hyperthyroidism, state of hypothyroidism, vegetative-vascular dystonia syndrome, higher than normal LDL-C. When the examined students combined the signs of hyperthyroidism, vegetative-vascular dystonia syndrome and higher level of LDL-C; with combination of signs of hypothyroidism, vegetative-vascular dystonia syndrome and higher level of LDL-C. The attributable risk in all cases exceeded 0.10, which confirmed the importance of some of these factors and their complexes in the formation of the effect of reduced immunoregulatory index. The CD4+/CD8+ index can be considered an important biomarker of AL and premature age-related changes in the immune system in residents of radiation-contaminated areas. The risk of AL formation in the case of occurrence of a complex of mediated secondary biomarkers (vegetative-vascular dystonia syndrome, thyroid dysfunction, hypercholesterolemia) is higher compared to their individual significance.


Ahmad, I. M., Temme, J. B., Abdalla, M. Y., & Zimmerman, M. C. (2016). Redox status in workers occupationally exposed to long-term low levels of ionizing radiation: A pilot study. Redox Report, 21(3), 139–145.

Akhaladze, N. G. (2016). Hirosima i Nagasaki, Chernobyil i Fukusima. Vliyanie otdalennyih effektov ioniziruyuschego oblucheniya na temp stareniya i zhiznesposobnost cheloveka (obzor literaturyi) [Hiroshima and Nagasaki, Chernobyl and Fukushima. Remote effects of exposure to ionizing radiation on the rate of human aging and viability (review of literature)]. Problems of Aging and Development, 25(3), 369–379 (in Russian).

Alonso-Fernández, P., Puerto, M., Maté, I., Ribera, J. M., & De La Fuente, M. (2008). Neutrophils of centenarians show function levels similar to those of young adults. Journal of the American Geriatrics Society, 56(12), 2244–2251.

Baldwin, J., & Grantham, V. (2015). Radiation hormesis: Historical and current perspectives. Journal of Nuclear Medicine Technology, 43(4), 242–246.

Belsky, J., & Pluess, M. (2009). Beyond diathesis-stress: Differential susceptibility to environmental influences. Psychological Bulletin, 135, 885–908.

Belsky, J., & Pluess, M. (2013). Beyond risk, resilience, and dysregulation: Phenotypic plasticity and human development. Development and Psychopathology, 25, 1243–1261.

Belsky, J., Jonassaint, C., Pluess, M., Stanton, M., Brummett, B., & Williams, R. (2009). Vulnerability genes or plasticity genes? Molecular Psychiatry, 14, 746–754.

Bernal, A. J., Dolinoy, D. C., Huang, D., Skaar, D. A., Weinhouse, C., & Jirtle, R. L. (2013). Adaptive radiation-induced epigenetic alterations mitigated by antioxidants. The FASEB Journal, 27(2), 665–671.

Bets, L. V. (2005). Ecological variability of hormonal concentrations in modern humans. Journal of Physiological Anthropology and Applied Human Science, 24(4), 451–457.

Bilokur, D. (2018). Pokaznyky nespetsyfichnoho antyinfektsiinoho zakhystu u osib z terytorii posylenoho radioekolohichnoho kontroliu Sumskoi oblasti [Indicators of nonspecific anti-infectious protection of individuals in the territories of intensified radioecological control of the Sumy Region]. Lesya Ukrainka Eastern European National University Scientific Bulletin, Series Biological Sciences, 377, 86–91 (in Ukrainian).

Boieva, S. S., Raksha-Sliusareva, O. A., & Sliusarev, O. A. (2018). Indicators of phagocytic activity, autosensibilization and purine metabolism in patients with pneumoconiosis. Zaporozhye Medical Journal, 4, 496–502.

Bozhkov, A. I., & Nikitchenko, Y. V. (2014). Thermogenesis and longevity in mammals. Thyroxin model of accelerated aging. Experimental Gerontology, 60, 173–182.

Brubaker, A. L., Rendon, J. L., Ramirez, L., Choudhry, M. A., & Kovacs, E. J. (2013). Reduced neutrophil chemotaxis and infiltration contributes to delayed resolution of cutaneous wound infection with advanced age. The Journal of Immunology, 190(4), 1746–1757.

Calabrese, E. J., & O’Connor, M. K. (2014). Estimating risk of low radiation doses – A critical review of the BEIR VII Report and its use of the linear no-threshold (LNT) hypothesis. Radiation Research, 182(5), 463–474.

Campisi, J., & di Fagagna, F. D. A. (2007). Cellular senescence: When bad things happen to good cells. Nature Reviews Molecular Cell Biology, 8(9), 729–740.

Cevenini, E., Monti, D., & Franceschi, C. (2013). Inflamm-ageing. Current Opinion in Clinical Nutrition and Metabolic Care, 16(1), 14–20.

Chen, W. L., Luan, Y. C., Shieh, M. C., Chen, S. T., Kung, H. T., Soong, K. L., Yeh, Y. C., Chou, T. S., Mong, S. H., Wu, J. T., Sun, C. P., Deng, W. P., Wu, M. F., & Shen, M. L. (2007). Effects of cobalt-60 exposure on health of Taiwan residents suggest new approach needed in radiation protection. Dose-Response, 5(1), 63–75.

Chystenko, I. H. (2013). Osoblyvosti adaptatsii uchniv riznykh vikovykh hrup do stresovykh chynnykiv [Adaptation peculiarities of students from different age groups to stressors]. Bulletin of the Chernihiv National Pedagogical University, Psychological Science Series, 114, 204–207 (in Ukrainian).

Cool, J., & Zappetti, D. (2019). The physiology of stress. In: Medical Student Well-Being. Springer, Cham. Pp. 1–15.

Cuttler, J. M. (2007). Health effects of low level radiation: When will we acknowledge the reality? Dose-Response, 5(4), 292–298.

Davis, F. G., Krestinina, L. Y., Preston, D., Epifanova, S., Degteva, M., & Akleyev, A. V. (2015). Solid cancer incidence in the Techa River incidence cohort: 1956–2007. Radiation Research, 184(1), 56–65.

Dobzhansky, T. (1968). On some fundamental concepts of Darwinian biology. In: Evolutionary biology. Springer, Boston. Pp. 1–34.

Esteller, M., & Herman, J. G. (2002). Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. The Journal of Pathology, 196(1), 1–7.

Fontana, L., Partridge, L., & Longo, V. D. (2010). Extending healthy life span – from yeast to humans. Science, 328(5976), 321–326.

Franceschi, C., Capri, M., Monti, D., Giunta, S., Olivieri, F., Sevini, F., Panourgia, M. P., Invidia, L., Celani, L., Scurti, M., Cevenini, E., Castellani, G. C., & Salvioli, S. (2007). Inflammaging and anti-inflammaging: A systemic perspective on aging and longevity emerged from studies in humans. Mechanisms of Ageing and Development, 128(1), 92–105.

Galván, I., Bonisoli-Alquati, A., Jenkinson, S., Ghanem, G., Wakamatsu, K., Mousseau, T. A., & Møller, A. P. (2014). Chronic exposure to low-dose radiation at Chernobyl favours adaptation to oxidative stress in birds. Functional Ecology, 28(6), 1387–1403.

Gayoso, I., Sanchez-Correa, B., Campos, C., Alonso, C., Pera, A., Casado, J. G., Morgado, S., Tarazona, R., & Solana, R. (2011). Immunosenescence of human natural killer cells. Journal of Innate Immunity, 3(4), 337–343.

Ginaldi, L., De Martinis, M., Monti, D., & Franceschi, C. (2004). The immune system in the elderly: Activation-induced and damage-induced apoptosis. Immunologic Research, 30(1), 81–94.

Glei, D. A., Goldman, N., Lin, Y. H., & Weinstein, M. (2011). Age-related changes in biomarkers: Longitudinal data from a population-based sample. Research on Aging, 33(3), 312–326.

Gomez, C. R., Boehmer, E. D., & Kovacs, E. J. (2005). The aging innate immune system. Current Opinion in Immunology, 17(5), 457–462.

Gourabi, H., & Mozdarani, H. (1998). A cytokinesis-blocked micronucleus study of the radioadaptive response of lymphocytes of individuals occupationally exposed to chronic doses of radiation. Mutagenesis, 13(5), 475–480.

Grjibovski, A. M. (2008). Analiz nominalnyih dannyih (nezavisimyie nablyudeniya) [Analysis of nominal data (independent observations)]. Human Ecology, 6, 58–68 (in Russian).

Haigis, M. C., & Yankner, B. A. (2010). The aging stress response. Molecular Cell, 40(2), 333–344.

Hayflick, L. (2007). Biological aging is no longer an unsolved problem. Annals of the New York Academy of Sciences, 1100(1), 1–13.

Hearps, A. C., Martin, G. E., Angelovich, T. A., Cheng, W. J., Maisa, A., Landay, A. L., Jaworowski, A., & Crowe, S. M. (2012). Aging is associated with chronic innate immune activation and dysregulation of monocyte phenotype and function. Aging Cell, 11(5), 867–875.

Hernández, L., Terradas, M., Camps, J., Martín, M., Tusell, L., & Genescà, A. (2015). Aging and radiation: Bad companions. Aging Cell, 14(2), 153–161.

Hofer, S. M., & Piccinin, A. M. (2010). Toward an integrative science of life-span development and aging. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 65(3), 269–278.

Hsu, H. C., Lu, L., Yi, N., Van Zant, G., Williams, R. W., & Mountz, J. D. (2007). Quantitative trait locus (QTL) mapping in aging systems. In: Biological aging. Humana Press. Pp. 321–348.

Juster, R.-P., & Lupien, S. J. (2012). Chronic stress and allostatic load. In: Handbook of clinical gender medicine. Karger Publishers. Pp. 70–81.

Juster, R.-P., McEwen, B. S., & Lupien, S. J. (2010). Allostatic load biomarkers of chronic stress and impact on health and cognition. Neuroscience and Biobehavioral Reviews, 35(1), 2–16.

Justice, J. N., Ferrucci, L., Newman, A. B., Aroda, V. R., Bahnson, J. L., Divers, J., Espeland, M. A., Marcovina, S., Pollak, M. N., Kritchevsky, S. B., Barzilai, N., & Kuchel, G. A. (2018). A framework for selection of blood-based biomarkers for geroscience-guided clinical trials: report from the TAME Biomarkers Workgroup. GeroScience, 40(5–6), 419–436.

Karlamangla, A. S., Singer, B. H., & Seeman, T. E. (2006). Reduction in allostatic load in older adults is associated with lower all-cause mortality risk: MacArthur studies of successful aging. Psychosomatic Medicine, 68(3), 500–507.

Kirkwood, T. B., & Shanley, D. P. (2010). The connections between general and reproductive senescence and the evolutionary basis of menopause. Annals of the New York Academy of Sciences, 1204(1), 21–29.

Klimova, E. M., Bozhkov, A. I., Kovalenko, T. I., Minukhin, V. V., & Belozerov, I. V. (2018). Young and old animals use different strategies for forming an immune response to infectious agents (Pseudomonas aeruginosa and Escherichia coli). Advances in Gerontology, 8(4), 284–291.

Korenev, M. M., Plekhova, O. I., Kalmykova, N. V., Kashina, V. L., & Borisko, G. O. (2009). Osoblyvosti lipidnoho spektru krovi u nashchadkiv likvidatoriv avariyi na ChAES [Some features of blood lipid spectrum in descendants of liquidators of the consequences of the Chernobyl accident]. Sovremennaja Pediatrija, 25, 56–58 (in Ukrainian).

Krikshtopaitis, M. Y. (1993). Problemyi fiziologicheskih osnov preduprezhdeniya rannego stareniya cheloveka [Problem of physiological fundamentals of the prevention of premature aging in humans]. Human Physiology, 16(5), 161–167 (in Russian).

Krivoschekov, S. G., & Mozolevskaya, N. V. (2007). Physiological mechanisms of adaptation and disadaptation in the North. Alaska Medicine, 49(2), 32–34.

Lapointe, J., & Hekimi, S. (2010). When a theory of aging ages badly. Cellular and Molecular Life Sciences, 67(1), 1–8.

Larbi, A., Franceschi, C., Mazzatti, D., Solana, R., Wikby, A., & Pawelec, G. (2008). Aging of the immune system as a prognostic factor for human longevity. Physiology, 23(2), 64–74.

Le Garff-Tavernier, M., Béziat, V., Decocq, J., Siguret, V., Gandjbakhch, F., Pautas, E., Debré, P., Merle-Beral, H., & Vieillard, V. (2010). Human NK cells display major phenotypic and functional changes over the life span. Aging Cell, 9(4), 527–535.

Leonardi, G. C., Accardi, G., Monastero, R., Nicoletti, F., & Libra, M. (2018). Ageing: From inflammation to cancer. Immunity and Ageing, 15(1), 1.

Leuraud, K., Richardson, D. B., Cardis, E., Daniels, R. D., Gillies, M., O’Hagan, J. A., Hamra, G. B., Haylock, R., Laurier, D., Moissonnier, M., Schubauer-Berigan, M. K., Thierry-Chef, I., & Kesminiene, A. (2015). Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): An international cohort study. The Lancet Haematology, 2(7), e276–e281.

Liochev, S. I. (2013). Reactive oxygen species and the free radical theory of aging. Free Radical Biology and Medicine, 60, 1–4.

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194–1217.

Lugli, E., Pinti, M., Nasi, M., Troiano, L., Ferraresi, R., Mussi, C., Salvioli, G., Patsekin, V., Robinson, J. P., Durante, C., Cocchi, M., & Cossarizza, A. (2007). Subject classification obtained by cluster analysis and principal component analysis applied to flow cytometric data. Cytometry Part A: The Journal of the International Society for Analytical Cytology, 71(5), 334–344.

Lupien, S. J., McEwen, B. S., Gunnar, M. R., & Heim, C. (2009). Effects of stress throughout the lifespan on the brain, behaviour and cognition. Nature Reviews Neuroscience, 10(6), 434–445.

Lupien, S. J., Ouellet-Morin, I., Hupbach, A., Tu, M. T., Buss, C., Walker, D., Pruessner, J. C., & McEwen, B. S. (2015). Beyond the stress concept: Allostatic load – A developmental biological and cognitive perspective. Developmental Psychopathology. Vol. 2: Developmental Neuroscience. Pp. 578–628.

Luz, C., Dornelles, F., Preissler, T., Collaziol, D., da Cruz, I. M., & Bauer, M. E. (2003). Impact of psychological and endocrine factors on cytokine production of healthy elderly people. Mechanisms of Ageing and Development, 124(8–9), 887–895.

Makovsky, R. D. (2006). Zdorove naseleniya i okruzhayuschaya prirodnaya sreda regiona [Population health and natural environment of the region]. Human Ecology, 12, 9–11 (in Russian).

Mattsson, S., & Nilsson, M. (2015). On the estimation of radiation-induced cancer risks from very low doses of radiation and how to communicate these risks. Radiation Protection Dosimetry, 165(1–4), 17–21.

McEwen, B. S. (1998). Protective and damaging effects of stress mediators. New England Journal of Medicine, 338(3), 171–179.

McEwen, B. S. (2007). Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiological Reviews, 87(3), 873–904.

McEwen, B. S., & Stellar, E. (1993). Stress and the individual: Mechanisms leading to disease. Archives of Internal Medicine, 153(18), 2093–2101.

McHugh, D., & Gil, J. (2018). Senescence and aging: Causes, consequences, and therapeutic avenues. The Journal of Cell Biology, 217(1), 65–77.

Meaney, M. J. (2010). Epigenetics and the biological definition of gene x environment interactions. Child Development, 81, 41–79.

Metcalf, T. U., Cubas, R. A., Ghneim, K., Cartwright, M. J., Grevenynghe, J. V., Richner, J. M., Olagnier, D. P., Wilkinson, P. A., Cameron, M. J., Park, B. S., Hiscott, J. B., Diamond, M. S., Wertheimer, A. M., Nikolich-Zugich, J., & Haddad, E. K. (2015). Global analyses revealed age-related alterations in innate immune responses after stimulation of pathogen recognition receptors. Aging Cell, 14(3), 421–432.

Minchenko, J. M., Dyagil, I. S., Dmytrenko, O. O., Dmytrenko, I. V., Shlaykhtychenko, T. Y., Gavrylenko, T. I., Billi, D. O., & Bebeshko, V. G. (2013). Znachennia henetychnykh markeriv radiochutlyvosti i radiorezystentnosti v formuvanni onkohematolohichnoi ta sertsevo-sudynnoi patolohii u oprominenykh pislia Chornobylskoi avarii [Role of radiosensitivity and radioresistance genetic markers in hematological and cardiovascular disease in persons exposed after the Chornobyl accident]. Problems of Radiation Medicine and Radiobiology, (18), 220–231 (in Ukrainian).

Minciullo, P. L., Catalano, A., Mandraffino, G., Casciaro, M., Crucitti, A., Maltese, G., Morabito, N., Lasco, A., Gangemi, S., & Basile, G. (2016). Inflammaging and anti-inflammaging: The role of cytokines in extreme longevity. Archivum Immunologiae et Therapiae Experimentalis, 64(2), 111–126.

Møller, A. P., & Mousseau, T. A. (2016). Are organisms adapting to ionizing radiation at Chernobyl? Trends in Ecology and Evolution, 31(4), 281–289.

Moran, E. (2018). Human adaptability: An introduction to ecological anthropology. Routledge.

Nenoi, M., Wang, B., & Vares, G. (2015). In vivo radioadaptive response: A review of studies relevant to radiation-induced cancer risk. Human and Experimental Toxicology, 34(3), 272–283.

Nylund, R., Lemola, E., Hartwig, S., Lehr, S., Acheva, A., Jahns, J., Hildebrandt, G., & Lindholm, C. (2014). Profiling of low molecular weight proteins in plasma from locally irradiated individuals. Journal of Radiation Research, 55(4), 674–682.

Olivieri, G., Bodycote, J., & Wolff, S. (1984). Adaptive response of human lymphocytes to low concentrations of radioactive thymidine. Science, 223(4636), 594–597.

Orgiazzi, J. (2015). Radiation-related health effects of major nuclear events. La Revue du Praticien, 65(1), 93–94.

Ostan, R., Bucci, L., Capri, M., Salvioli, S., Scurti, M., Pini, E., Monti, D., & Franceschi, C. (2008). Immunosenescence and immunogenetics of human longevity. Neuroimmunomodulation, 15(4–6), 224–240.

Paganelli, R., Quinti, I., Fagiolo, U., Cossarizza, A., Ortolani, C., Guerra, E., Sansoni, P., Pucillo, L. P., Scala, E., Cozzi, E., Bertollo, L., Monti, D., & Franceschi, C. (1992). Changes in circulating B cells and immunoglobulin classes and subclasses in a healthy aged population. Clinical and Experimental Immunology, 90(2), 351–354.

Pastel, R. H. (2002). Radiophobia: Long-term psychological consequences of Chernobyl. Military Medicine, 167(suppl. 1), 134–136.

Pawelec, G., Akbar, A., Caruso, C., Solana, R., Grubeck-Loebenstein, B., & Wikby, A. (2005). Human immunosenescence: Is it infectious? Immunological Reviews, 205(1), 257–268.

Pinti, M., Appay, V., Campisi, J., Frasca, D., Fülöp, T., Sauce, D., Larbi, A., Weinberger, B., & Cossarizza, A. (2016). Aging of the immune system: Focus on inflammation and vaccination. European Journal of Immunology, 46(10), 2286–2301.

Plakuev, A. N., Yuryeva, M. Y., & Yuryev, Y. (2011). Sovremennyie kontseptsii stareniya i otsenka biologicheskogo vozrasta cheloveka [Modern concepts of ageing and assessment of human biological age]. Human Ecology, 4, 17–25 (in Russian).

Plowden, J., Renshaw-Hoelscher, M., Engleman, C., Katz, J., & Sambhara, S. (2004). Innate immunity in aging: Impact on macrophage function. Aging Cell, 3(4), 161–167.

Pluess, M., & Belsky, J. (2011). Prenatal programming of postnatal plasticity? Development and Psychopathology, 23, 29–38.

Rajah, M. N., Bastianetto, S., Bromley-Brits, K., Cools, R., D’Esposito, M., Grady, C. L., Poirier, J., Quirion, R., Raz, N., Rogaeva, E., Song, W., & Pruessner, J. (2009). Biological changes associated with healthy versus pathological aging: A symposium review. Ageing Research Reviews, 8(2), 140–146.

Rando, T. A., & Chang, H. Y. (2012). Aging, rejuvenation, and epigenetic reprogramming: Resetting the aging clock. Cell, 148, 46–57.

Richardson, R. B. (2009). Ionizing radiation and aging: Rejuvenating an old idea. Aging, 1(11), 887–902.

Rithidech, K. N., & Scott, B. R. (2008). Evidence for radiation hormesis after in vitro exposure of human lymphocytes to low doses of ionizing radiation. Dose-Response, 6(3), 252–271.

Roff, D. A. (2012). Evolutionary quantitative genetics. Springer Science & Business Media.

Rossnerova, A., Honkova, K., Pavlikova, J., Skalicka, Z. F., Havrankova, R., Solansky, I., Rossner, P., Sram, R. J., & Zölzer, F. (2016). Mapping the factors affecting the frequency and types of micronuclei in an elderly population from Southern Bohemia. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 793, 32–40.

Rossnerova, A., Pokorna, M., Svecova, V., Sram, R. J., Topinka, J., Zölzer, F., & Rossner, P. (2017). Adaptation of the human population to the environment: Current knowledge, clues from Czech cytogenetic and “omics” biomonitoring studies and possible mechanisms. Mutation Research/Reviews in Mutation Research, 773, 188–203.

Sacks, B., Meyerson, G., & Siegel, J. A. (2016). Epidemiology without biology: False paradigms, unfounded assumptions, and specious statistics in radiation science (with commentaries by Inge Schmitz-Feuerhake and Christopher Busby and a reply by the authors). Biological Theory, 11(2), 69–101.

Seeman, T. E., Singer, B. H., Rowe, J. W., Horwitz, R. I., & McEwen, B. S. (1997). Price of adaptation – allostatic load and its health consequences: MacArthur studies of successful aging. Archives of Internal Medicine, 157(19), 2259–2268.

Seng, H. (2009). Predicting age using biomarkers and physiological measurements. Journal Biomedical Information, 2009, 1–5.

Shah, D. J., Sachs, R. K., & Wilson, D. J. (2012). Radiation-induced cancer: A modern view. The British Journal of Radiology, 85(1020), e1166–e1173.

Shi, X., Mothersill, C., & Seymour, C. (2016). No adaptive response is induced by chronic low-dose radiation from Ra-226 in the CHSE/F fish embryonic cell line and the HaCaT human epithelial cell line. Environmental Research, 151, 537–546.

Shibamoto, Y., & Nakamura, H. (2018). Overview of biological, epidemiological, and clinical evidence of radiation hormesis. International Journal of Molecular Sciences, 19(8), 2387.

Skivka, L. M., Fedorchuk, O. G., Khranovska, N. M., Rudyk, M. P., & Opeida, I. V. (2015b). Diurnal variation in functional reserve and metabolic polarization of circulating monocytes in healthy men: 5.09. European Journal of Clinical Investigation, 45, 49–50.

Skivka, L. M., Fedorchuk, O. G., Susak, Y. M., Susak, M. Y., Malanchuk, O. M., Rudyk, M. P., & Nowicky, Y. W. (2015a). Physical activity interferes with the immunomodulatory effect of the antineoplastic drug NSC631570. Current Pharmaceutical Biotechnology, 16(1), 49–59.

Sokolenko, V. (2016b). Znachennia henetychnykh system AB0, Rh ta Hp u stres-indukovanii imunoreaktyvnosti meshkantsiv terytorii, zabrudnenykh radionuklidamy [The value of genetic systems AB0, Rh and Hp in stress-induced immunoreactivity among residents living in the areas contaminated with radionuclides]. Lesya Ukrainka Eastern European National University Scientific Bulletin, Series Biological Sciences, 332, 142–147 (in Ukrainian).

Sokolenko, V. L. (2016a). Pokaznyky kholesterynu ta imunnoyi systemy u osib z oznakamy veheto-sudynnoyi dystoniyi, shcho prozhyvaly na terytoriyakh, zabrudnenykh radionuklidamy [Cholesterol rate and immune system indices in people with symptoms of vegetative-vascular dystonia, who lived in the territories contaminated with radionuclides]. World of Medicine and Biology, 2, 86–90 (in Ukrainian).

Sokolenko, V. L., & Sokolenko, S. V. (2015). Aktyvnist radionuklidiv i realizetsiia funktsii imunnoi systemy u meshkantsiv radiatsiino zabrudnenykh terytorii [Radionuclide activity and the immune system functioning in residents of radiation contaminated areas]. Regulatory Mechanisms in Biosystems, 6(2), 93–96 (in Ukrainian).

Sokolenko, V. L., & Sokolenko, S. V. (2016). Vplyv pomirnykh fizychnykh navantazhen na pokaznyky imunnoi systemy u meshkantsiv radiatsiino zabrudnenykh terytorii [Influence of moderate physical load on parameters of the immune system among residents of contaminated areas]. Regulatory Mechanisms in Biosystems, 7(1), 48–52.

Sokolenko, V. L., & Sokolenko, S. V. (2017a). Vzaiemozviazok pokaznykiv imunnoi systemy ta tyreoidnoho statusu v osib z radiatsiino-zabrudnenykh terytorii za umov psykhoemotsiinoho navantazhennia [Interactions between immune system parameters and thyroid status in people from radioactive contaminated areas by the conditions of emotional stress]. Fiziolohichnyi Zhurnal, 63(3), 32–39 (in Ukrainian).

Sokolenko, V. L., & Sokolenko, S. V. (2017b). Vzaiemozviazok lipidnoho obminu ta tyreoidnoho statusu za prolonhovanoho vplyvu malykh doz radiatsii [The interaction between lipid exchange and thyroid status in the conditions of prolonged influence of small doses of radiation]. Regulatory Mechanisms in Biosystems, 8(2), 231–238 (in Ukrainian).

Sokolenko, V. L., & Sokolenko, S. V. (2017c). Znachennia statevoho faktora u realizatsii okremykh pokaznykiv imunnoi, endokrynnoi system ta lipidnoho obminu za umov prolonhovanoho vplyvu malykh doz radiatsii [The importance of gender factor in realization of significant parameters of the immune and endocrine systems, and also lipid metabolism, in conditions of prolonged effect of low dose radiation]. Visnyk Problem Biolohii i Medytsyny, 135, 412–416 (in Ukrainian).

Sokolenko, V. L., & Sokolenko, S. V. (2019). Interdependence of oxidative/antioxidant system indicators and thyroid status under conditions of prolonged exposure to small doses of radiation. Regulatory Mechanisms in Biosystems, 10(2), 219–227.

Sokolenko, V. L., Sokolenko, S. V., Sheiko, V. I., & Kovalenko, O. V. (2018). Interconnection of the immune system and the intensity of the oxidative processes under conditions of prolonged exposure to small doses of radiation. Regulatory Mechanisms in Biosystems, 9(2), 167–176.

Sokolov, M., & Neumann, R. (2016). Global gene expression alterations as a crucial constituent of human cell response to low doses of ionizing radiation exposure. International Journal of Molecular Sciences, 17(1), 55.

Somero, G. N., Lockwood, B. L., & Tomanek, L. (2017). Biochemical adaptation: Response to environmental challenges, from life’s origins to the anthropocene. Sinauer Associates Incorporated Publishers.

Sonnentag, S., & Fritz, C. (2006). Endocrinological processes associated with job stress: Catecholamine and cortisol responses to acute and chronic stressors. In: Perrewe, P., & Ganster, D. (Ed.). Employee health, coping and methodologies. Emerald Group Publishing Limited, Bingley. Pp. 1–59.

Sumner, D. (2007). Health effects resulting from the Chernobyl accident. Medicine, Conflict and Survival, 23(1), 31–45.

Szyf, M., & Pluess, M. (2015). Epigenetics and well-being: Optimal adaptation to the environment. In: Pluess, M. (Ed.). Genetics of psychological well-being. Oxford University Press, Oxford. Pp. 211–230.

Tang, F. R., Loke, W. K., & Khoo, B. C. (2016). Low-dose or low-dose-rate ionizing radiation-induced bioeffects in animal models. Journal of Radiation Research, 58(2), 165–182.

Vaiserman, A., Koliada, A., & Socol, Y. (2019). Hormesis through low-dose radiation. In: Rattan, S. I. S., & Kyriazis, M. (Eds.). The science of hormesis in health and longevity. Academic Press. Pp. 129–138.

Ventura, M. T., Casciaro, M., Gangemi, S., & Buquicchio, R. (2017). Immunosenescence in aging: Between immune cells depletion and cytokines up-regulation. Clinical and Molecular Allergy, 15(1), 21.

Voitenko, V. P. (1987). Matematicheskoe modelirovanie v gerontologii [Mathematical modeling in gerontology]. In: Gerontology and geriatry. Annual book: Immunity and aging. Kyiv. Pp. 118–130 (in Russian).

Voitenko, V. P., Tokar’, A. V., Rudaya, E. S., Kolodchenko, V. P., Ena, L. M., Lanovaya, V. B., Ahaladze, N. G., Persidskiy, I. V., & Chernyavskaya, A. A. (1989). Opredelenie biologicheskogo vozrasta kak problema nenozologicheskoy diagnostiki [Determination of biological age as a problem of nonnosological diagnosis]. In: Medicobiological and social aspects of aging: Problems of gerontology. Vol. 11. Kyiv. Pp. 9–14 (in Russian).

Wajapeyee, N., Serra, R. W., Zhu, X., Mahalingam, M., & Green, M. R. (2008). Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell, 132(3), 363–374.

Weksler, M. E., & Szabo, P. (2000). The effect of age on the B-cell repertoire. Journal of Clinical Immunology, 20(4), 240–249.

Wikby, A., Ferguson, F., Forsey, R., Thompson, J., Strindhall, J., Löfgren, S., Nilsson, B. O., Ernerudh, J., Pawelec, G., & Johansson, B. (2005). An immune risk phenotype, cognitive impairment, and survival in very late life: Impact of allostatic load in Swedish octogenarian and nonagenarian humans. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 60(5), 556–565.

Wikby, A., Nilsson, B. O., Forsey, R., Thompson, J., Strindhall, J., Löfgren, S., Ernerudh, J., Pawelec, G., Ferguson, F., & Johansson, B. (2006). The immune risk phenotype is associated with IL-6 in the terminal decline stage: Findings from the Swedish NONA immune longitudinal study of very late life functioning. Mechanisms of Ageing and Development, 127(8), 695–704.

Wiley, C. D., Velarde, M. C., Lecot, P., Liu, S., Sarnoski, E. A., Freund, A., Shirakawa, K., Lim, H. W., Davis, S. S., Ramanathan, A., Gerencser, A. A., Verdin, E., & Campisi, J. (2016). Mitochondrial dysfunction induces senescence with a distinct secretory phenotype. Cell Metabolism, 23(2), 303–314.

Wiley, J. F., Gruenewald, T. L., Karlamangla, A. S., & Seeman, T. E. (2016). Modeling multisystem physiological dysregulation. Psychosomatic Medicine, 78(3), 290–301.

Xia, X., Chen, W., McDermott, J., & Han, J. D. J. (2017). Molecular and phenotypic biomarkers of aging. Version 1. F1000Research, 6, 860.

Yang, E. V., & Glaser, R. (2002). Stress-induced immunomodulation and the implications for health. International Immunopharmacology, 2(2–3), 315–324.

Yankner, B. A., Lu, T., & Loerch, P. (2008). The aging brain. Annual Review of Pathology: Mechanisms of Disease, 3, 41–66.

Zaporozhan, V. M., Bazhora, Y. I., Kresiun, V. Y., Vorokhta, Y. M., Marichereda, V. H., & Chesnokova, M. M. (2010). Molekuliarna epidemiolohiia [Molecular epidemiology]. Odeskyi Derzhavnyi Medychnyi Universytet, Odesa (in Ukrainian).

Zaretskaya, Y. M. (1983). Klinicheskaya immunogenetika [Clinical immunogenetics]. Meditsina, Moscow (in Russian).

Zölzer, F., Havránková, R., Skalická, Z. F., Rössnerová, A., & Šrám, R. J. (2015). Analysis of genetic damage in lymphocytes of former uranium processing workers. Cytogenetic and Genome Research, 147(1), 17–23.

Zölzer, F., Hon, Z., Skalická, Z. F., Havránková, R., Navrátil, L., Rosina, J., & Škopek, J. (2012). Micronuclei in lymphocytes from currently active uranium miners. Radiation and Environmental Biophysics, 51(3), 277–282.

Zölzer, F., Křížová, M., Freitinger Skalická, Z., Rössnerová, A., & Šrám, R. (2017). Micronucleus frequency and content in healthy relatives of cancer patients. Biomarkers, 22(7), 667–673.

How to Cite
Sokolenko, V. L., & Sokolenko , S. V. (2019). Manifestations of allostatic load in residents of radiation contaminated areas aged 18–24 years . Regulatory Mechanisms in Biosystems, 10(4), 422-431.