Interdependence of oxidative/antioxidant system indicators and thyroid status under conditions of prolonged exposure to small doses of radiation

  • V. L. Sokolenko Bohdan Khmelnytsky National University of Cherkasy
  • S. V. Sokolenko Bohdan Khmelnytsky National University of Cherkasy
Keywords: Chornobyl disaster; malonic dialdehyde; ceruloplasmin; thyroid-stimulating hormone; triiodothyronine; emotional stress


We have studied the interdependence of the intensity of oxidative processes/antioxidant level and the thyroid status parameters in a group of students aged 18–24 who lived for a long time in the territory of enhanced radioecological control (density of soil contamination by isotopes (137Cs 3.7 ∙ 104 – 18.5 ∙ 104 Bq/m2). We examined 50 people from relatively environmentally friendly areas (control group) and 50 people from IV radiation zone (experimental group). In the experimental group, there were no individuals with clinical manifestations of thyroid pathology. However, subgroups with signs of hyperthyroidism and hypothyroidism were identified. We evaluated the level of cortisol, thyrotrophic hormone (TSH), triiodothyronine (T3), thyroxine (T4), malonic dialdehyde (MDA), ceruloplasmin (CP), transferrin (Tf), sulfhydryl groups (SH); we calculated the oxidative stress index (OSI). The research was conducted one month before the examination time and also during the exams as a factor in increased emotional stress. A lowered CP level was found in the subgroup with signs of hypothyroidism; SH groups – in all subgroups, separated by thyroid status. The oxidative stress index was higher in all students examined of the experimental group, compared with the control. The growth of MDA level is marked in the experimental group – it is the most strongly pronounced in conditions of additional emotional load in people with signs of hyperthyroidism and hypothyroidism. CP level significantly decreased in the subgroup of hyperthyroidism on the background of T3 decrease. OSI increased in all students examined from the experimental group. In the subgroup of hypothyroidism it became significantly higher than in the subgroup of euthyroidism. A positive correlation between the levels of CP and T3 was found. The highest values of the correlation coefficients were noted for subgroups with signs of hyperthyroidism and hypothyroidism, with the coefficient significance increasing under conditions of emotional stress. The index of oxidative stress in the experimental group positively correlated with the level of TSH – in terms of emotional stress, the statistical significance of the coefficients disappeared. In the subgroups divided by thyroid status, variability of interactions between OSI and T3 was observed but it was not statistically significant. It was found that the participation of thyroid status in supporting redox homeostasis in people aged 18–24 who suffered from chronic small-doze radiation exposure was realized mainly by the influence on the antioxidant system. The ability of thyroid hormones to maintain a proper antioxidant state was suppressed in this group. The unbalanced relationship between thyroid hormones and oxidative stress indicators is strongly manifested under conditions of additional emotional stress.


Abilés, J., de la Cruz, A. P., Castaño, J., Rodríguez-Elvira, M., Aguayo, E., Moreno-Torres, R., Llopis, J., Aranda, P., Arguelles, S., Ayala, A., de la Quintana, A. M., & Planells, E. M. (2006). Oxidative stress is increased in critically ill patients according to antioxidant vitamins intake, independent of severity: A cohort study. Critical Care, 10(5), R146.

Abou-El-Ardat, K., Monsieurs, P., Anastasov, N., Atkinson, M., Derradji, H., De Meyer, T., Bekaert, S., Van Criekinge, W., & Baatout, S. (2012). Low dose irradiation of thyroid cells reveals a unique transcriptomic and epigenetic signature in RET/PTC-positive cells. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 731(1), 27–40.

Akiibinu, M. O., Ogundahunsi, O. A., & Ogunyemi, E. O. (2012). Inter-relationship of plasma markers of oxidative stress and thyroid hormones in schizophrenics. BMC Research Notes, 5(1), 169–174.

Al-Fahham, A. A. (2015). Correlation between oxidative stress and thyroid hormone levels in infertile women. International Journal of Scientific and Research Publications, 5(12), 128–131.

Andryskowski, G., & Owczarek, T. (2007). The evaluation of selected oxidative stress parameters in patients with hyperthyroidism. Polskie Archiwum Medycyny Wewnetrznej, 117(7), 285–289.

Anjaneyulu, O., Pottennagari, S., & Dammalapati, P. K. (2015). Lipoproteins and lipid peroxidation in thyroid disorders. IOSR Journal of Biotechnology and Biochemistry, 1(2), 32–37.

Ardern, C. L., Glasgow, P., Schneiders, A., Witvrouw, E., Clarsen, B., Cools, A., Gojanovic, B., Griffin, S., Khan K. M., Moksnes, H., Mutch, S. A., Phillips, N., Reurink, G., Sadler, R., Silbernagel, K. G., Thorborg, K., Wangensteen, A., Wilk, K. E., & Bizzini, M. (2016). 2016 Consensus statement on return to sport from the First World Congress in Sports Physical Therapy, Bern. British Journal of Sports Medicine, 50(14), 853–864.

Azzam, E. I., Jay-Gerin, J. P., & Pain, D. (2012). Ionizing radiation-induced metabolic oxidative stress and prolonged cell injury. Cancer Letters, 327(1–2), 48–60.

Baser, H., Can, U., Baser, S., Yerlikaya, F. H., Aslan, U., & Hidayetoglu, B. T. (2015). Assesment of oxidative status and its association with thyroid autoantibodies in patients with euthyroid autoimmune thyroiditis. Endocrine, 48(3), 916–923.

Baskol, G., Atmaca, H., Tanrıverdi, F., Baskol, M., Kocer, D., & Bayram, F. (2007). Oxidative stress and enzymatic antioxidant status in patients with hypothyroidism before and after treatment. Experimental and Clinical Endocrinology and Diabetes, 115(8), 522–526.

Bhattacharya, A., Saha, R., Mondal, T., Choudhuri, S., & Gupta, S. (2014). Ceruloplasmin and serum MDA levels in hypothyroid patients. International Journal of Biomedical And Advance Research, 5(8), 369–372.

Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5(1), 9–19.

Borisko, G. A., Kashkalda, D. A., Kalmykova, N. V., & Cherevatova, S. K. (2008). Osobennosti vzaimootnosheniy pokazateley gormonalnoy regulyatsii i obmennykh protsessov u detey iz semey radiatsionnogo riska [Peculiarities of the mutual relation between the indices of hormonal regulation and metabolism of the children from the families of radiation risk]. Visnyk Kharkivskoho Natsionalnoho Universytetu imeni V. N. Karazina. Seriia: Biolohiia, 814, 5–8 (in Russian).

Brotman, D. J., Golden, S. H., & Wittstein, I. S. (2007). The cardiovascular toll of stress. The Lancet, 370(9592), 1089–1100.

Campos, C., & Casado, Á. (2015). Oxidative stress, thyroid dysfunction and down syndrome. The Indian Journal of Medical Research, 142(2), 113–119.

Cardis, E., & Hatch, M. (2011). The Chernobyl accident – an epidemiological perspective. Clinical Oncology, 23(4), 251–260.

Cheserek, M. J., Wu, G. R., Ntazinda, A., Shi, Y. H., Shen, L. Y., & Le, G. W. (2015). Association between thyroid hormones, lipids and oxidative stress markers in subclinical hypothyroidism. Journal of Medical Biochemistry, 34(3), 323–331.

Colucci, R., Dragoni, F., & Moretti, S. (2015). Oxidative stress and immune system in vitiligo and thyroid diseases. Oxidative medicine and cellular longevity, 2015, 631927.

Combs Jr, G. F., & Combs, S. B. (1986). The role of selenium in nutrition. Orlando, Academic Press.

Contis, G., & Foley Jr, T. P. (2015). Depression, suicide ideation, and thyroid tumors among Ukrainian adolescents exposed as children to Chernobyl radiation. Journal of Clinical Medicine Research, 7(5), 332.

Costantini, F., Pierdomenico, S. D., Cesare, D. D., De Remigis, P., Bucciarelli, T., Bittolo-Bon, G., Gazzlato, G., Nubile, G., Guagnano, M., Sensi, S., & Cuccurullo, F. (1998). Effect of thyroid function on LDL oxidation. Arteriosclerosis, Thrombosis, and Vascular Biology, 18(5), 732–737.

Dardano, A., Ghiadoni, L., Plantinga, Y., Caraccio, N., Bemi, A., Duranti, E., Taddey, S., Ferrannini, E., Salvetti, A., & Monzani, F. (2006). Recombinant human thyrotropin reduces endothelium-dependent vasodilation in patients monitored for differentiated thyroid carcinoma. The Journal of Clinical Endocrinology and Metabolism, 91(10), 4175–4178.

Das, K., & Chainy, G. B. N. (2004). Thyroid hormone influences antioxidant defense system in adult rat brain. Neurochemical Research, 29(9), 1755–1766.

De Vito, P., Balducci, V., Leone, S., Percario, Z., Mangino, G., Davis, P. J., Davis, F. B., Affabris, E., Luly, P., Pedersen, J. Z., & Incerpi, S. (2012). Nongenomic effects of thyroid hormones on the immune system cells: New targets, old players. Steroids, 77(10), 988–995.

Dostert, P., Benedetti, M. S., & Frigerio, E. (1991). Effect of L-dopa, oxyferriscorbone and ferrous iron on in vivo lipid peroxidation. Journal of Neural Transmission, 84(1–2), 119–128.

Dumitriu, L., Bartoc, R., Ursu, H., Purice, M., & Ionescu, V. (1988). Significance of high levels of serum malonyl dialdehyde (MDA) and ceruloplasmin (CP) in hyper-and hypothyroidism. Endocrinologie, 26(1), 35–38.

Einor, D., Bonisoli-Alquati, A., Costantini, D., Mousseau, T. A., & Møller, A. P. (2016). Ionizing radiation, antioxidant response and oxidative damage: A meta-analysis. Science of the Total Environment, 548, 463–471.

Engelking, L. R. (2010). Textbook of veterinary physiological chemistry. Academic Press.

Erdamar, H., Demirci, H., Yaman, H., Erbil, M. K., Yakar, T., Sancak, B., Elbeg, S., Biberglu, G., & Yetkin, I. (2008). The effect of hypothyroidism, hyperthyroidism, and their treatment on parameters of oxidative stress and antioxidant status. Clinical Chemistry and Laboratory Medicine, 46(7), 1004–1010.

Fernández, V., Tapia, G., Varela, P., Romanque, P., Cartier-Ugarte, D., & Videla, L. A. (2006). Thyroid hormone-induced oxidative stress in rodents and humans: A comparative view and relation to redox regulation of gene expression. Comparative Biochemistry and Physiology. Part C: Toxicology and Pharmacology, 142(3–4), 231–239.

Fernández-Sánchez, A., Madrigal-Santillán, E., Bautista, M., Esquivel-Soto, J., Morales-González, Á., Esquivel-Chirino, C., Durante-Montiel, I., Sánchez-Rivera, G., Valadez-Vega, C., & Morales-González, J. A. (2011). Inflammation, oxidative stress, and obesity. International Journal of Molecular Sciences, 12(5), 3117–3132.

Filaire, E., Alix, D., Ferrand, C., & Verger, M. (2009). Psychophysiological stress in tennis players during the first single match of a tournament. Psychoneuroendocrinology, 34(1), 150–157.

Fommei, E., & Iervasi, G. (2002). The role of thyroid hormone in blood pressure homeostasis: Evidence from short-term hypothyroidism in humans. The Journal of Clinical Endocrinology and Metabolism, 87(5), 1996–2000.

Fushiki, S. (2013). Radiation hazards in children-lessons from Chernobyl, Three Mile Island and Fukushima. Brain and Development, 35(3), 220–227.

Garasto, S., Montesanto, A., Corsonello, A., Lattanzio, F., Fusco, S., Passarino, G., Giarritta, P., & Corica, F. (2017). Thyroid hormones in extreme longevity. Mechanisms of Ageing and Development, 165, 98–106.

Graninger, W., Pirich, K. R., Speiser, W., Deutsch, E., & Waldhäusl, W. K. (1986). Effect of thyroid hormones on plasma protein concentrations in man. The Journal of Clinical Endocrinology and Metabolism, 63(2), 407–411.

Ha, T. K. K., Sattar, N., Talwar, D., Cooney, J., Simpson, K., O'reilly, D. S. J., & Lean, M. E. J. (1996). Abnormal antioxidant vitamin and carotenoid status in chronic renal failure. QJM: An International Journal of Medicine, 89(10), 765–770.

Halliwell, B., & Gutteridge, J. M. (2015). Free radicals in biology and medicine. Oxford University Press, Oxford.

Haribabu, A., Reddy, V. S., Pallavi, C., Bitla, A. R., Sachan, A., Pullaiah, P., Suresh, V., Rao, S., & Suchitra, M. M. (2013). Evaluation of protein oxidation and its association with lipid peroxidation and thyrotropin levels in overt and subclinical hypothyroidism. Endocrine, 44(1), 152–157.

Huh, K., Kwon, T. H., Kim, J. S., & Park, J. M. (1998). Role of the hepatic xanthine oxidase in thyroid dysfunction: Effect of thyroid hormones in oxidative stress in rat liver. Archives of Pharmacal Research, 21(3), 236–240.

Hussein, R. A. M., Al-Salih, R. M., & Ali, S. A. R. (2017). A study of prolactin, thyroid stimulating hormones, malondialdehyde and ceruloplasmin levels in infertile women, in Thi-Qar Governorate/Iraq. Thi-Qar Medical Journal, 14(2), 14–21.

Hybsier, S., Höfig, C., Mittag, J., Brabant, G., & Schomburg, L. (2015). Control of serum copper (Cu) and selenium (Se) status by thyroid hormones. Experimental and Clinical Endocrinology and Diabetes, 123(3), 12–18.

Boice, J. D. Jr. (2017). Chapter 3 – From Chernobyl to Fukushima and Beyond – A focus on thyroid cancer. Thyroid cancer and nuclear accidents. Long-term aftereffects of Chernobyl and Fukushima. Pp. 21–32.

Joshi, V. R., Mallick, A. K., Goud, M. B., Maradi, R., Reddy, M. G., Tey, R., & Shorey, G. (2011). Effect of serum copper concentration and ceruloplasmin on lipid parameters leading to increased propensity to cardiovascular risk. Research Journal of Pharmaceutical, Biological and chemical Science, 2(2), 558–563.

Kam, W. W. Y., & Banati, R. B. (2013). Effects of ionizing radiation on mitochondria. Free Radical Biology and Medicine, 65, 607–619.

Kannisto, K., Rehnmark, S., Slätis, K., Webb, P., Larsson, L., Gafvels, M., Eggertsen, G. & Parini, P. (2014). The thyroid receptor β modulator GC-1 reduces atherosclerosis in ApoE deficient mice. Atherosclerosis, 237(2), 544–554.

Karbownik, M., & Lewinski, A. (2003). The role of oxidative stress in physiological and pathological processes in the thyroid gland; possible involvement in pineal-thyroid interactions. Neuro Endocrinology Letters, 24(5), 293–303.

Kim, I. G., Park, S. Y., Kim, K. C., & Yum, J. J. (1998). Thiol-linked peroxidase activity of human ceruloplasmin. FEBS Letters, 431(3), 473–475.

Korol, L. V., & Myhal, L. A. (2012). Method of integral evaluation of oxidant-antioxidant balance in blood serum [Sposib intehralnoi otsinky oksydantno-antyoksydantnoho balansu u syrovatsi krovi]. Patent № 102192 UA, CIP G01N 33/48 (2006.01). No a201205647. 08.05.2012. Publ. 10.06.2013, Bul. No 11. (in Ukrainian).

Kosova, F., Çetin, B., Akıncı, M., Aslan, S., Arı, Z., Sepici, A., Altan, N., & Çetin, A. (2007). Advanced oxidation protein products, ferrous oxidation in xylenol orange, and malondialdehyde levels in thyroid cancer. Annals of Surgical Oncology, 14(9), 2616–2620.

Kurjane, N., Bruvere, R., Shitova, O., Romanova, T., Jaunalksne, I., Kirschfink, M., & Sochnevs, A. (2001). Analysis of the immune status in Latvian Chernobyl clean-up workers with nononcological thyroid diseases. Scandinavian Journal of Immunology, 54(5), 528–533.

Leonard, B., & Maes, M. (2012). Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neuroscience and Biobehavioral Reviews, 36(2), 764–785.

Lindemann, J. A. L., Angajala, A., Engler, D. A., Webb, P., & Ayers, S. D. (2014). Thyroid hormone induction of human cholesterol 7 alpha-hydroxylase (Cyp7a1) in vitro. Molecular and Cellular Endocrinology, 388(1), 32–40.

Loseva, O., Shubbar, E., Haghdoost, S., Evers, B., Helleday, T., & Harms-Ringdahl, M. (2014). Chronic low dose rate ionizing radiation exposure induces premature senescence in human fibroblasts that correlates with up regulation of proteins involved in protection against oxidative stress. Proteomes, 2(3), 341–362.

Lutai, Y. M., Parkhomeko, O. M., Ryzhkova, N. O., Havrylenko, T. I., Irkin, O. I., Kozhukhov, S. M., Stepura, A. O., & Bilyi, D. O. (2016). Vplyv terapii vnutrishnovennym inhibitorom 5-lipoksyhenazy kvertsetynom na funktsiiu endoteliiu, vyrazhenist systemnoho zapalennia ta prooksydantnoho stresu pry hostromu infarkti miokarda z elevatsiieiu ST [Effects of Intravenous 5-lipoxygenase inhibitor quercetin therapy on endothelial function, severity of systemic inflammation and oxidative stress in acute myocardial infarction with elevation of ST]. Medytsyna Nevidkladnykh Staniv, 1, 111–119 (in Ukrainian).

Maia, A. L., Kim, B. W., Huang, S. A., Harney, J. W., & Larsen, P. R. (2005). Type 2 iodothyronine deiodinase is the major source of plasma T3 in euthyroid humans. The Journal of Clinical Investigation, 115(9), 2524–2533.

Mancini, A., Di Segni, C., Raimondo, S., Olivieri, G., Silvestrini, A., Meucci, E., & Currò, D. (2016). Thyroid hormones, oxidative stress, and inflammation. Mediators of Inflammation, 2016, 6757154.

Mancini, A., Festa, R., Donna, V. D., Leone, E., Littarru, G. P., Silvestrini, A., Meucci, E., & Pontecorvi, A. (2010). Hormones and antioxidant systems: Role of pituitary and pituitary-dependent axes. Journal of Endocrinological Investigation, 33(6), 422–433.

Marino, F., Guasti, L., Cosentino, M., De Piazza, D., Simoni, C., Piantanida, E., Cimpanelli, M., Klersy, C., Bartalena, L., Venco, A., & Lecchini, S. (2006). Thyroid hormone regulation of cell migration and oxidative metabolism in polymorphonuclear leukocytes: Clinical evidence in thyroidectomized subjects on thyroxine replacement therapy. Life Sciences, 78, 1071–1077.

Mathison, R. (2006). Modulation of neutrophil function by hormones. Current Immunology Reviews, 2(3), 247–259.

Memişoǧulları, R., & Bakan, E. (2004). Levels of ceruloplasmin, transferrin, and lipid peroxidation in the serum of patients with Type 2 diabetes mellitus. Journal of Diabetes and its Complications, 18(4), 193–197.

Mezosi, E., Szabo, J., Nagy, E. V., Borbely, A., Varga, E., Paragh, G., & Varga, Z. (2005). Nongenomic effect of thyroid hormone on free-radical production in human polymorphonuclear leukocytes. Journal of Endocrinology, 185(1), 121–129.

Mittag, J., Behrends, T., Nordström, K., Anselmo, J., Vennström, B., & Schomburg, L. (2012). Serum copper as a novel biomarker for resistance to thyroid hormone. Biochemical Journal, 443(1), 103–109.

Moustafa, A. H. A., Ali, E. M., Mohamed, T. M., & Abdou, H. I. (2009). Oxidative stress and thyroid hormones in patients with liver diseases. European Journal of Internal Medicine, 20(7), 703–708.

Mustafina, S. V., Rimar, O. D., Simonova, G. I., Ragino, Y. I., Kuznetsov, S. S., Scherbakova, L. V., & Malyutina, S. K. (2010). Funkcional'noe sostojanie shhitovidnoj zhelezy i lipidnyj profil' krovi [Functional state of thyroid gland and lipid blood profile]. Ateroskleroz, 6(2), 15–19 (in Russian).

Nanda, N., Bobby, Z., & Hamide, A. (2008). Oxidative stress and protein glycation in primary hypothyroidism. Male/female difference. Clinical and Experimental Medicine, 8(2), 101–108.

Napoli, C., Postiglione, A., Triggiani, M., Corso, G., Palumbo, G., Carbone, V., Ruocco, A., Ambrosio, G., Montefusco, S., Malorni, A., Condorelli, M., & Chiariello, M. (1995). Oxidative structural modifications of low density lipoprotein in homozygous familial hypercholesterolemia. Atherosclerosis, 118(2), 259–273.

Nylund, R., Lemola, E., Hartwig, S., Lehr, S., Acheva, A., Jahns, J., Hildebrandt, G., & Lindholm, C. (2014). Profiling of low molecular weight proteins in plasma from locally irradiated individuals. Journal of Radiation Research, 55(4), 674–682.

Oziol, L., Faure, P., Vergely, C., Rochette, L., Artur, Y., Chomard, P., & Chomard, P. (2001). In vitro free radical scavenging capacity of thyroid hormones and structural analogues. Journal of Endocrinology, 170(1), 197–206.

Öztürk, Ü., Vural, P., Özderya, A., Karadağ, B., Doğru-Abbasoğlu, S., & Uysal, M. (2012). Oxidative stress parameters in serum and low density lipoproteins of Hashimoto's thyroiditis patients with subclinical and overt hypothyroidism. International Immunopharmacology, 14(4), 349–352.

Popovych, I. L., Fliunt, I. S., Alieksieiev, O. I., Baryliak, L. H., & Bilas, V. R. (2003). Sanogenetychni zasady reabilitacii' na kurorti Truskavec' urologichnyh hvoryh chornobyl's'kogo kontyngentu [Sanogenetic principles of rehabilitation of urological patients of Chornobyl contingent at Truskavets resort]. Komp’juterpres, Kyiv (in Ukrainian).

Ramandeep, K., Kapil, G., & Harkiran, K. (2017). Correlation of enhanced oxidative stress with altered thyroid profile: Probable role in spontaneous abortion. International Journal of Applied and Basic Medical Research, 7(1), 20–25.

Resch, U., Helsel, G., Tatzber, F., & Sinzinger, H. (2002). Antioxidant status in thyroid dysfunction. Clinical Chemistry and Laboratory Medicine, 40(11), 1132–1134.

Rudyk, M. P., Pozur, V. V., Voieikova, D. O., Hurmach, Y. V., Khranovska, N. M., Skachkova, O. V., Svyatetska, V. M., Fedorchuk, O. G., Skivka, L. M., Berehova, T. V., & Ostapchenko, L. I. (2018). Sex-based differences in phagocyte metabolic profile in rats with monosodium glutamate-induced obesity. Scientific Reports, 8(1), 5419.

Rudyk, M., Fedorchuk, O., Susak, Y., Nowicky, Y., & Skivka, L. (2016). Introduction of antineoplastic drug NSC631570 in an inpatient and outpatient setting: Comparative evaluation of biological effects. Asian Journal of Pharmaceutical Sciences, 11(2), 308–317.

Rumiantsev, P. O., Saenko, V. A., & Dedov, I. I. (2017). Chapter 10 – Influence of radiation exposure and ultrasound screening on the clinical behavior of papillary thyroid carcinoma in young patients. Thyroid cancer and nuclear accidents. Long-term aftereffects of Chernobyl and Fukushima. Pp. 97–107.

Ryan, J. L. (2012). Ionizing radiation: The good, the bad, and the ugly. Journal of Investigative Dermatology, 132(3), 985–993.

Santi, A., Duarte, M. M., de Menezes, C. C., & Loro, V. L. (2012). Association of lipids with oxidative stress biomarkers in subclinical hypothyroidism. International Journal of Endocrinology, 2012, 856359.

Sarandöl, E., Taş, S., Dirican, M., & Serdar, Z. (2005). Oxidative stress and serum paraoxonase activity in experimental hypothyroidism: Effect of vitamin E supplementation. Cell Biochemistry and Function: Cellular Biochemistry and its Modulation by Active Agents or Disease, 23(1), 1–8.

Sinha, R. A., Singh, B. K., & Yen, P. M. (2014). Thyroid hormone regulation of hepatic lipid and carbohydrate metabolism. Trends in Endocrinology and Metabolism, 25(10), 538–545.

Skivka, L. M., Fedorchuk, O. G., Khranovska, N. M., Rudyk, M. P., & Opeida, I. V. (2015). Diurnal variation in functional reserve and metabolic polarization of circulating monocytes in healthy men. European Journal of Clinical Investigation, 45, 49–50.

Skivka, L. M., Fedorchuk, O. G., Susak, Y. M., Susak, M. Y., Malanchuk, O. M., Rudyk, M. P., & Nowicky, Y. W. (2015a). Physical activity interferes with the immunomodulatory effect of the antineoplastic drug NSC631570. Current Pharmaceutical Biotechnology, 16(1), 49–59.

Smith, J. T., Willey, N. J., & Hancock, J. T. (2012). Low dose ionizing radiation produces too few reactive oxygen species to directly affect antioxidant concentrations in cells. Biology Letters, 8(4), 594–597.

Sokolenko, V. L. (2016). Pokaznyky kholesterynu ta imunnoyi systemy u osib z oznakamy veheto-sudynnoyi dystoniyi, shcho prozhyvaly na terytoriyakh, zabrudnenykh radionuklidamy [Cholesterol rate and immune system indices in people with symptoms of vegetative-vascular dystonia, who lived in the territories contaminated with radionuclides]. World of Medicine and Biology, 2, 86–90 (in Ukrainian).

Sokolenko, V. L., & Sokolenko, S. V. (2015). Aktyvnist radionuklidiv i realizatsiia funktsii imunnoi systemy u meshkantsiv radiatsiino zabrudnenykh terytorii [Radionuclide activity and the immune system functioning in residents of radiation contaminated areas]. Regulatory Mechanisms in Biosystems, 6(2), 93–96 (in Ukrainian).

Sokolenko, V. L., & Sokolenko, S. V. (2016). Vplyv pomirnykh fizychnykh navantazhen na pokaznyky imunnoi systemy u meshkantsiv radiatsiino zabrudnenykh terytorij [Influence of moderate physical load on parameters of the immune system among residents of contaminated areas]. Regulatory Mechanisms in Biosystems, 7(1), 48–52.

Sokolenko, V. L., & Sokolenko, S. V. (2016a). Osoblyvosti okysnoi ta antyoksydantnoi system u meshkantsiv terytorii, zabrudnenykh radionuklidamy [Specifics of oxidant and antioxidant systems in residents of the territories contaminated with radionuclides]. Visnyk Problem Biolohii i Medytsyny, 4(1), 176–180 (in Ukrainian).

Sokolenko, V. L., & Sokolenko, S. V. (2017). Vzaiemozviazok lipidnoho obminu ta tyreoidnoho statusu za prolonhovanoho vplyvu malykh doz radiatsii [The interaction between lipid exchange and thyroid status in the conditions of prolonged influence of small doses of radiation]. Regulatory Mechanisms in Biosystems, 8(2), 231–238 (in Ukrainian).

Sokolenko, V. L., Sokolenko, S. V., Sheiko, V. I., & Kovalenko, O. V. (2018). Interconnection of the immune system and the intensity of the oxidative processes under conditions of prolonged exposure to small doses of radiation. Regulatory Mechanisms in Biosystems, 9(2), 167–176.

Somogyi, A., Rosta, K., Pusztai, P., Tulassay, Z., & Nagy, G. (2007). Antioxidant measurements. Physiological Measurement, 28(4), R41.

Spitz, D. R., Azzam, E. I., Li, J. J., & Gius, D. (2004). Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: A unifying concept in stress response biology. Cancer and Metastasis Reviews, 23(3–4), 311–322.

Stone, W. L., & Dratz, E. A. (1982). Selenium and non-selenium glutathione peroxidase activities in selected ocular and non-ocular rat tissues. Experimental Eye Research, 35(5), 405–412.

Takamura, N., Orita, M., Saenko, V., Yamashita, S., Nagataki, S., & Demidchik, Y. (2016). Radiation and risk of thyroid cancer: Fukushima and Chernobyl. The Lancet Diabetes and Endocrinology, 4(8), 647.

Torun, A. N., Kulaksizoglu, S., Kulaksizoglu, M., Pamuk, B. O., Isbilen, E., & Tutuncu, N. B. (2009). Serum total antioxidant status and lipid peroxidation marker malondialdehyde levels in overt and subclinical hypothyroidism. Clinical Endocrinology, 70(3), 469–474.

Toth, P. P., Grabner, M., Punekar, R. S., Quimbo, R. A., Cziraky, M. J., Jacobson, T. A. (2014). Cardiovascular risk in patients achieving low-density lipoprotein cholesterol and particle targets. Atherosclerosis, 235(2), 585–591.

Venditti, P., & Di Meo, S. (2006). Thyroid hormone-induced oxidative stress. Cellular and Molecular Life Sciences, 63(4), 414–434.

Videla, L. A. (2000). Energy metabolism, thyroid calorigenesis, and oxidative stress: Functional and cytotoxic consequences. Redox Report, 5(5), 265–275.

Villanueva, I., Alva-Sanchez, C., & Pacheco-Rosado, J. (2013). The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. Oxidative Medicine and Cellular Longevity, 2013, 218145.

Vrndic, O. B., Radivojevic, S. D., Jovanovic, M. D., Djukic, S. M., Teodorovic, L. C. M., & Simonovic, S. T. Z. (2014). Oxidative stress in patients with differentiated thyroid cancer: Early effects of radioiodine therapy. Indian Journal of Biochemistry and Biophysics, 51(3), 223–229.

Yang, R. L., Shi, Y. H., Hao, G., Li, W., & Le, G. W. (2008). Increasing oxidative stress with progressive hyperlipidemia in human: Relation between malondialdehyde and atherogenic index. Journal of Clinical Biochemistry and Nutrition, 43(3), 154–158.

Yilmaz, S., Ozan, S., Benzer, F., & Canatan, H. (2003). Oxidative damage and antioxidant enzyme activities in experimental hypothyroidism. Cell Biochemistry and Function, 21(4), 325–330.

Zainal, I. G. (2016). Relationship between thyroid function, cystatin C and differrent oxidative stress in Iraqi patients with chronic kidney disease. Medical Journal of Babylon, 13(2), 337–346.

How to Cite
Sokolenko, V. L., & Sokolenko, S. V. (2019). Interdependence of oxidative/antioxidant system indicators and thyroid status under conditions of prolonged exposure to small doses of radiation . Regulatory Mechanisms in Biosystems, 10(2), 219-227.