The bioelectric type of the visual area of the cerebral cortex of rats of all ages and sexes


  • V. V. Mizin Oles Honchar Dnipro National University
  • V. P. Lyashenko Oles Honchar Dnipro National University
  • S. M. Lukashov Diagnostic and Treatment Scientific-Advisory Center "Headache"
Keywords: electrocorticogram; background electrical activity; neocortex; juvenile age; young age; mature age; presenile age

Abstract

In the ontogenesis process, the cerebral cortex undergoes age-related changes. So far as, unlike practically all other systems of mammalian organs, the brain continues to develop and receive new functionality in the postnatal period. Thus with age, there are changes in the bioelectric characteristics of the neocortex. The purpose of the research is to determine the age and sex changes in the bioelectric activity of the cerebral visual cortex of male and female rats of different ages. In the article, we examined changes in absolute (μV2) and normalized (%) indicators of electrical activity of the visual area of rats of different sexes in four age groups: juvenile, young, mature, and presenile age. The research was carried out by the method of registration of bioelectric activity of electrocorticograms (ECoG). Results of multifactorial dispersion analysis of absolute and normalized ECoG indicators of the visual area of the cerebral cortex of rats of all ages showed that there were reliable changes in the frequency-amplitude characteristics of bioelectric activity related to age. At a young age, males have probably lower absolute and normalized power of the delta-rhythm and the normalized beta-like rhythm rate. There was a tendency of decrease in the theta-rhythm. As a result of this redistribution of rhythms a desynchronization of the electrical activity of young males was observed. Mature males have lower absolute power indicators than younger age groups. According to normalized indicators, a synchronization of rhythms of males in the mature age group was observed, which together with values of absolute power can indicate a decrease of the functional activity level of the neocortex and an increase of the influence of endogenous mechanisms on neuronal activity of the visual area of the cerebral cortex. In the presenile age, there was a desynchronization of rhythms. The indicators of an absolute and normalized power of females in the young age group pointed to the synchronization of the bioecoactivity of the neocortex. Among the low-frequency waves, theta-rhythm rhythm dominated in the females of young age. In the mature and presenile age females, there was a probable increase in the percentage of normalized parameters of high-frequency beta waves. The predominance of this rhythm may indicate an increase of cortical tone. The correlation of values of absolute and normalized indicators of bioelectric activity affirmed the desynchronization of the ECoG rhythms of females of mature and presenile age. Sex differences are expressed by a decrease in the absolute power of all ECoG rhythms of the visual area of the cerebral cortex of females relative to males. The age-related changes occurred in a different way in rats of different sex. At a young age, males had desynchronization of rhythms, and females had synchronization, in the mature age it was vice versa. The age changes of the electric activity of the cerebral visual cortex of rats in our opinion may be largely associated with involutional changes of various neurotransmitter and hormonal systems.

References

Agadzhanjan, N. A. (1983). Adaptacija i rezervy organizma [Adaptation and body reserves]. Fizkul'tura i Sport, Moscow (in Russian).
Andrzejewski, M. E., Schochet, T. L., Feit, E. C., Harris, R., McKee, B. L., & Kelley, A. E. (2011). A comparison of adult and adolescent rat behavior in operant learning, extinction, and behavioral inhibition paradigms. Behavioral Neuroscience, 125(1), 93–105.
Bachinskaya, N. Y. (2010). Sindrom umerennykh kognitivnykh narusheniy [Syndrome of moderate cognitive impairment]. Neyro News: Psikhonevrologiya i Neyropsikhiatriya, 2(1), 12–17 (in Russian).
Berchenko, O. G., Bevzyuk, D. O., Levicheva, N. O., & Koladko, S. P. (2016). Neyrofiziolohichni mekhanizi formu nevimichnoyi zalezhnosti samo stymulyatsiyeyu pozytyvno emotsiynykh zon mozhu u shchuriv [Neurophysiological mechanisms of formation of non-chemical dependence through self-stimulation of positive emotiogenic areas of rats’ brains]. Visnyk of Dnipropetrovsk University, Biology, Ecology, 24(2), 270–275 (in Ukrainian).
Bradshaw, S. E., Agster, V. L., Waterhouse, B. D., & McGauyhy, J. A. (2016). Age-related changes in prefrontal nonepinephrive transporter density: The basis for improved cognitive flexibility after low closes of atomoxetine in adolescent rats. Brain Research, 1641(B), 245–257.
Brenhouse, H. C., & Andersen, S. L. (2011). Developmental trajectories during adolescence in males and females: A cross-species understanding of underlying brain changes. Neuroscience and Biobehavioral Reviews, 35(8), 1687–1703.
Brockmann, M. D., Poschel, B., Cichon, N., & Hanganu-Opatz, I. L. (2011). Coupled oscillations mediate directed interactions between prefrontal cortex and hippocampus of the neonatal rat. Neuron, 71, 332–347.
Buchmann, A., Ringli, M., Kurth, S., Schaerer, M., Geiger, A., Jenni, O. G., & Huber, R. (2011). EEG sleep slow-wave activity as a mirror of cortical maturation. Cerebral Cortex, 21, 607–615.
Buresh, J., Petran', M., & Zahar, I. (1962). Jelektrofiziologicheskie metody isledovanija [Electrophysiological methods of investigation]. Izdatel’stvo Inostrannoj Literatury, Moscow (in Russian).
Calabresea, E., Badeaa, A., Watsonc, C., & Johnson, A. G. (2013). A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability. NeuroImage, 71(1), 196–206.
Chaus, G. G., Chaus, T. G., & Lyashenko, V. P. (2008). Dynamika pokaznykiv bioelektrychnoyi aktyvnosti kory holovnoho mozku shchuriv za umov stresu i zastosuvannya hidazepamu [Dynamics of indicators of bioelectric activity of rat cerebral cortex under conditions of stress and the use of hydazepam]. Visnyk of Dnipropetrovsk University, Biology, Ecology, 16(1), 210–215 (in Ukrainian).
Choi, H., Choi, Y., Kim, K. W., Kang, H., Hwang, D. W., Kim, E. E., Chung, J. C., & Lee, D. S. (2015). Maturation of metabolic connectivity of the adolescent rat brain. eLife, 4, e11571.
Derimedved', L. V., Percev, I. M., & Shuvalova, E. V. (2001). Vzaimodejstvie lekarstv i jeffektivnost' farmakoterapii [Interaction of drugs and the effectiveness of pharmacotherapy]. Megapolis, Kharkov (in Russian).
Gao, W., Alcauter, S., Elton, A., Hernandez-Castillo, C. R., Smith, J. K., Ramirez, J., & Lin, W. (2015). Functional network development during the first year: Relative sequence and socioeconomic correlations. Cerebral Cortex, 25, 2919–2928.
Gradwohl, G., Berdugo-Boura, N., Segev, Y., & Tarasiuk, A. (2015). Sleep/wake dynamics changes during maturation in rats. PLOS One, 10(4), e0125509.
Griffen, T. C., Haley, M. S., Fontanini, A., & Maffei, A. (2017). Rapid plasticity of visually evoked responses in rat monocular visual cortex. PLOS One, 12(9), e0184618.
Howe, W. M., Gritton, H. J., Lusk, N. A., Roberts, E. A., Hetrick, V. L., Berke, J. D., & Sarter, M. (2017). Acetylcholine release in prefrontal cortex promotes gamma oscillations and theta-gamma coupling during detection. Journal of Neuroscience, 37(12), 3215–3230.
Kocharyan, A., Fernandes, P., Tong, X. K., Vaucher, E., & Hamel, E. (2008). Specific subtypes of cortical GABA interneurons contribute to the neurovascular coupling response to basal forebrain stimulation. Journal of Cerebral Blood Flow and Metabolism, 28, 221–231.
Lopes da Silva, F. H., Gonçalves, S. I., & De Munck, J. C. (2009). Electroencephalography (EEG). Encyclopedia of Neuroscience, 2009, 849–855.
Makhmudova, N. S. (2013). Bioelektricheskiy profil' zritel'noy i sensomotornoy oblastey kory mozga krys razlichnogo vozrasta, plodnyy period beremennosti proshedshikh v usloviyakh gipokenezii [The bioelectric profile of the visual and sensorimotor areas of the cerebral cortex of rats of different ages, the gestational period of gestation passed under hypokinesia]. Sibirskiy Meditsinskiy Zhurnal, 3, 36–38 (in Russian).
Man'kovskiy, N. B., & Kuznetsova, S. M. (2013). Vozrastnyye izmeneniya neyrotransmiternykh sistem mozga kak faktor riska tserebrovaskulyarnoy patologii [Age-related changes in the neurotransmitter systems of the brain as a risk factor for cerebrovascular disease]. Zhurnal Nevrologii im. B. M. Man'kovskogo, 2, 5–13 (in Russian).
Marshall, C. A. G., Suzuki, S. O., & Goldman, J. E. (2003). Gliogenic and neurogenic progenitors of the subventricular zone: Who are they, where did they come from, and where are they going. Glia, 43, 52–61.
McDougall, S., Vargas Riad, W., Silva-Gotay, A., Tavares, H. S., Harpalani, D., Li, G. L., & Richardson, H. N. (2018). Myelination of axons corresponds with faster transmission speed in the prefrontal cortex of developing male rats. eNeuro, 5(4), e0203-18.
Mengler, L., Khmelinskii, A., Diedenhofen, M., Po, C., Staring, M., Lelieveldt, B. P., & Hoehn, M. (2014). Brain maturation of the adolescent rat cortex and striatum: Changes in volume and myelination. NeuroImage, 84, 35–44.
Meyer, H. C., & Bucci, D. J. (2014). The ontogeny of learned inhibition. Learning and Memory, 21(3), 143–152.
Mizin, V. V., Lyashenko, V. P., & Lukashov, S. M. (2017). Vzayemozv’yazok mizh rivnem kortykosteronu ta dehidroepiandrosteron-sulʹfantom v syrovattsi krovi shchuriv riznoho viku ta stati [The relationship between the level of corticosterone and dehydroepiandrosterone sulfate in the blood serum of rats of different age and sex]. Visnyk Zaporizʹkyy Natsionalʹnyy Universytet, 2, 67–74 (in Ukrainian).
Mizin, V. V., Lyashenko, V. P., & Lukashov, S. M. (2018). Zminy potuzhnostey elektrychnoyi aktyvnosti motornoyi zony kory holovnoho mozku samok shchuriv riznoho viku [Power changes in electrical activity of motor zone of the main brain of female rats of different age]. Visnyk Cherkasʹkyy Universytet, Biolohichni Nauky, 1, 105–113.
Murzin, O. B., Lyashenko, V. P., & Zadorozhnaya, G. A. (2015). Zminy bioelektrychnoyi aktyvnosti kory holovnoho mozku shchuriv, pid vplyvom vykhrovoho impulʹsnoho mahnitnoho polya [Changes in the bioelectric activity of rat cerebral cortex, under the influence of a vortex pulsed magnetic field]. Visnyk Problem Biolohiyi i Medytsyny, 118, 377–381 (in Ukrainian).
Naber, P. A., Witter, M. P., & Lopes da Silva, F. H. (2000). Differential distribution of barrel or visual cortex. Evoked responses along the rostro-caudal axis of the peri- and postrhinal cortices. Brain Research, 877, 298–305.
Obermayer, J., Verhovy, M. B., Luchicchi, A., & Mansvelder, H. D. (2017). Cholinineryic modulation of cortical microcircuits is layer-specific: Evidence from rodent, monkey and human brain. Frontiers in Neural Circuits, 100, 1–12.
Paxinos, G., & Watson, C. (2013). The rat brain in stereotaxic coordinates. 7th ed. Academic Press.
Pirttimaki, T. M., Sims, R. E., Saunders, G., Antonio, S. A., Codadu, N. K., & Parri, H. R. (2017). Astrocyte-mediated neuronal sychronization properties revealed by false gliotransmitter release. Journal of Neuroscience, 37(41), 9859–9870.
Schliebs, R., & Arendt, T. (2011). The cholinergic system in aging and neuronal degeneration. Behavioral Brain Research, 221, 555–563.
Semple, B. D., Blomgren, K., Gimlin, K., Ferriero, D. M., & Noble-Haeusslein, L. J. (2013). Brain development in rodents and humans: Identifying benchmarks of maturation and vulnerability to injury across species. Progress in Neurobiology, 1268, 1–16.
Shumilova, T. E., Smirnov, A. G., & Sheshkov, V. I. (2015). Activity and circulatory effects of nitrite in the rat cerebrum. Biology Bulletin, 42(2), 139–144.
Sun, W., McConnell, E., Pare, J. F., Xu, Q., & Chen, M. (2013). Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science, 339, 197–200.
Tarokh, L., Carskadon, M. A., & Achermann, P. (2010). Developmental changes in brain connectivity assessed using the sleep EEG. Neuroscience, 171(2), 622–634.
Tucker, A. M., Aquilina, K., Chakkarapani, E., Hobbs, C. E., & Thoresen, M. (2009). Development of amplitude-integrated electroencephalography and interburst interval in the rat. Pediatric Research, 65(1), 62–67.
Turic’ka, T. G., Lukashov, S. M., & Lyashenko, V. P. (2016). Efekty vplyvu khronichnoyi kofeyinovoyi alimentatsiyi na pokaznyky fonovoyi elektrychnoyi aktyvnosti neokorteksu shchuriv [Effects of chronic caffeine alimentation on the performance indicators of rat neocortex background electrical activity]. Experimental Physiology and Biochemistry, 75(3), 11–16 (in Ukrainian).
Vorob'eva, T. M., & Koljadko, S. P. (2007). Jelektricheskaja aktivnost' mozga (priroda, mehanizmy, funkcional'noe znachenie) [The electrical activity of the brain (the nature, mechanisms, functional significance)]. Eksperimental'naja i Klinicheskaja Medicina, 2, 4–11 (in Ukrainian).
Wonders, C. P., & Anderson, S. A. (2006). The origin and specification of cortical interneurons. Nature Reviews Neuroscience, 7(9), 687–696.
Zapadnjuk, I. P., Zapadnjuk, E. A., Zaharija, E. A., & Zapadnjuk, B. V. (1983). Laboratornye zhivotnye: Razvedenie, soderzhanie, ispol'zovanie v eksperimente [Laboratory animals: Breeding, content, use in experiment]. Vishha Shkola, Kyiv (in Russian).
Zhang, Z. W. (2006). Postnatal development of the mammalian neocortex: Role of activity revisited. Canadian Journal of Neurological Science, 33, 158–169.
Published
2018-10-25
How to Cite
Mizin, V. V., Lyashenko, V. P., & Lukashov, S. M. (2018). The bioelectric type of the visual area of the cerebral cortex of rats of all ages and sexes. Regulatory Mechanisms in Biosystems, 9(4), 514-521. https://doi.org/https://doi.org/10.15421/021877

Most read articles by the same author(s)

Obs.: This plugin requires at least one statistics/report plugin to be enabled. If your statistics plugins provide more than one metric then please also select a main metric on the admin's site settings page and/or on the journal manager's settings pages.